TY - JOUR
T1 - Pattern formation in stiff oscillatory media with nonlocal coupling
T2 - A numerical study of the hydrogen oxidation reaction on Pt electrodes in the presence of poisons
AU - Plenge, F.
AU - Varela, H.
AU - Krischer, K.
PY - 2005/12
Y1 - 2005/12
N2 - The impact of the strength of negative (desynchronizing) global coupling (NGC) on the spatiotemporal dynamics of an electrochemical relaxation oscillator is studied numerically with a prototypical model, the electro-oxidation of hydrogen in the presence of poisons. The results are compared with recent experiments. The NGC has a destabilizing effect on the homogeneous oscillations. Both, in theory and in experiments, the basic patterns found with increasing global coupling strength are modulated oscillations, target patterns (including an asymmetric variant), and modulated pulses, the average spatial inhomogeneity during an oscillation increasing with the intensity of the NGC. It is suggested that this scenario is typical for strong relaxation oscillations, and a comparison with an electrochemical oscillator exhibiting harmonic oscillations points to the fact that the critical coupling strength, upon which the complete synchronization is destroyed, is larger for relaxation oscillations than for harmonic oscillations. In addition, the numerical simulations predicted two- and three-phase cluster patterns at high coupling strength. Also in experiments cluster patterns were observed, however only in parameter regions of the local dynamics which were different from the one investigated in this study.
AB - The impact of the strength of negative (desynchronizing) global coupling (NGC) on the spatiotemporal dynamics of an electrochemical relaxation oscillator is studied numerically with a prototypical model, the electro-oxidation of hydrogen in the presence of poisons. The results are compared with recent experiments. The NGC has a destabilizing effect on the homogeneous oscillations. Both, in theory and in experiments, the basic patterns found with increasing global coupling strength are modulated oscillations, target patterns (including an asymmetric variant), and modulated pulses, the average spatial inhomogeneity during an oscillation increasing with the intensity of the NGC. It is suggested that this scenario is typical for strong relaxation oscillations, and a comparison with an electrochemical oscillator exhibiting harmonic oscillations points to the fact that the critical coupling strength, upon which the complete synchronization is destroyed, is larger for relaxation oscillations than for harmonic oscillations. In addition, the numerical simulations predicted two- and three-phase cluster patterns at high coupling strength. Also in experiments cluster patterns were observed, however only in parameter regions of the local dynamics which were different from the one investigated in this study.
UR - http://www.scopus.com/inward/record.url?scp=33244455401&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.72.066211
DO - 10.1103/PhysRevE.72.066211
M3 - Article
AN - SCOPUS:33244455401
SN - 1539-3755
VL - 72
JO - Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
JF - Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
IS - 6
M1 - 066211
ER -