PathDriver: A Path-Driven Architectural Synthesis Flow for Continuous-Flow Microfluidic Biochips

Xing Huang, Youlin Pan, Grace Li Zhang, Bing Li, Wenzhong Guo, Tsung Yi Ho, Ulf Schlichtmann

Research output: Contribution to journalConference articlepeer-review

13 Scopus citations


Continuous-flow microfluidic biochips have attracted high research interest over the past years. Inside such a chip, fluid samples of milliliter volumes are efficiently transported between devices (e.g., mixers, etc.) to automatically perform various laboratory procedures in biology and biochemistry. Each transportation task, however, requires an exclusive flow path composed of multiple contiguous microchannels during its execution period. Excess/waste fluids, in the meantime, should be discarded by independent flow paths connected to waste ports. All these paths are etched in a very tiny chip area using multilayer soft lithography and driven by flow ports connecting with external pressure sources, forming a highly integrated chip architecture that dominates the performance of biochips. In this paper, we propose a practical synthesis flow called PathDriver for the design automation of microfluidic biochips, integrating the actual fluid manipulations into both high-level synthesis and physical design, which has never been considered in prior work. Given the protocols of biochemical applications, PathDriver aims to generate highly efficient chip architectures with a flow-path network that enables the manipulation of actual fluid transportation and removal. Additionally, fluid volume management between devices and flow-path minimization are realized for the first time, thus ensuring the correctness of assay outcomes while reducing the complexity of chip architectures. Experimental results on multiple benchmarks demonstrate the effectiveness of the proposed synthesis flow.

Original languageEnglish
Article number9256478
JournalIEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD
StatePublished - 2 Nov 2020
Event39th IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2020 - Virtual, San Diego, United States
Duration: 2 Nov 20205 Nov 2020


Dive into the research topics of 'PathDriver: A Path-Driven Architectural Synthesis Flow for Continuous-Flow Microfluidic Biochips'. Together they form a unique fingerprint.

Cite this