Abstract
Many machine learning problems can be reduced to the maximization of sub-modular functions. Although well understood in the serial setting, the parallel maximization of submodular functions remains an open area of research with recent results [1] only addressing monotone functions. The optimal algorithm for maximizing the more general class of non-monotone submodular functions was introduced by Buchbinder et al. [2] and follows a strongly serial double-greedy logic and program analysis. In this work, we propose two methods to parallelize the double-greedy algorithm. The first, coordination-free approach emphasizes speed at the cost of a weaker approximation guarantee. The second, concurrency control approach guarantees a tight 1/2-approximation, at the quantifiable cost of additional coordination and reduced parallelism. As a consequence we explore the tradeoff space between guaranteed performance and objective optimality. We implement and evaluate both algorithms on multi-core hardware and billion edge graphs, demonstrating both the scalability and tradeoffs of each approach.
Original language | English |
---|---|
Pages (from-to) | 118-126 |
Number of pages | 9 |
Journal | Advances in Neural Information Processing Systems |
Volume | 1 |
Issue number | January |
State | Published - 2014 |
Externally published | Yes |
Event | 28th Annual Conference on Neural Information Processing Systems 2014, NIPS 2014 - Montreal, Canada Duration: 8 Dec 2014 → 13 Dec 2014 |