TY - GEN
T1 - Panoptic 3D Scene Reconstruction From a Single RGB Image
AU - Dahnert, Manuel
AU - Hou, Ji
AU - Nießner, Matthias
AU - Dai, Angela
N1 - Publisher Copyright:
© 2021 Neural information processing systems foundation. All rights reserved.
PY - 2021
Y1 - 2021
N2 - Understanding 3D scenes from a single image is fundamental to a wide variety of tasks, such as for robotics, motion planning, or augmented reality. Existing works in 3D perception from a single RGB image tend to focus on geometric reconstruction only, or geometric reconstruction with semantic segmentation or instance segmentation. Inspired by 2D panoptic segmentation, we propose to unify the tasks of geometric reconstruction, 3D semantic segmentation, and 3D instance segmentation into the task of panoptic 3D scene reconstruction – from a single RGB image, predicting the complete geometric reconstruction of the scene in the camera frustum of the image, along with semantic and instance segmentations. We thus propose a new approach for holistic 3D scene understanding from a single RGB image which learns to lift and propagate 2D features from an input image to a 3D volumetric scene representation. We demonstrate that this holistic view of joint scene reconstruction, semantic, and instance segmentation is beneficial over treating the tasks independently, thus outperforming alternative approaches.
AB - Understanding 3D scenes from a single image is fundamental to a wide variety of tasks, such as for robotics, motion planning, or augmented reality. Existing works in 3D perception from a single RGB image tend to focus on geometric reconstruction only, or geometric reconstruction with semantic segmentation or instance segmentation. Inspired by 2D panoptic segmentation, we propose to unify the tasks of geometric reconstruction, 3D semantic segmentation, and 3D instance segmentation into the task of panoptic 3D scene reconstruction – from a single RGB image, predicting the complete geometric reconstruction of the scene in the camera frustum of the image, along with semantic and instance segmentations. We thus propose a new approach for holistic 3D scene understanding from a single RGB image which learns to lift and propagate 2D features from an input image to a 3D volumetric scene representation. We demonstrate that this holistic view of joint scene reconstruction, semantic, and instance segmentation is beneficial over treating the tasks independently, thus outperforming alternative approaches.
UR - http://www.scopus.com/inward/record.url?scp=85131790355&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85131790355
T3 - Advances in Neural Information Processing Systems
SP - 8282
EP - 8293
BT - Advances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
A2 - Ranzato, Marc'Aurelio
A2 - Beygelzimer, Alina
A2 - Dauphin, Yann
A2 - Liang, Percy S.
A2 - Wortman Vaughan, Jenn
PB - Neural information processing systems foundation
T2 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
Y2 - 6 December 2021 through 14 December 2021
ER -