p53 contains large unstructured regions in its native state

Stefan Bell, Christian Klein, Lin Müller, Silke Hansen, Johannes Buchner

Research output: Contribution to journalArticlepeer-review

224 Scopus citations

Abstract

The human tumor suppressor protein p53 is understood only to some extent on a structural level. We performed a comprehensive biochemical and biophysical structure-function analysis of p53 full-length protein and p53 fragments. The analysis showed that p53 and the fragments investigated form stable functional units. Full-length p53 and the tetrameric fragment N93p53 (residues 93-393) are, however, destabilized significantly compared to the monomeric core domain (residues 94-312) and the monomeric fragment p53C312 (residues 1-312). At the physiological temperature of 37°C and in the absence of modifications or stabilizing partners, wild-type p53 is more than 50% unfolded correlating with a 75% loss in DNA-binding activity. Furthermore the analysis of CD spectra revealed that full-length p53 contains large unstructured regions in its N and C-terminal parts. Our results indicate that full-length p53 is a modular protein consisting of defined structured and unstructured regions. We propose that p53 belongs to the growing family of loosely folded or partially unstructured native proteins. The lack of a rigid structure combined with the low overall stability may allow the physiological interaction of p53 with a multitude of partner proteins and the regulation of its turnover.

Original languageEnglish
Pages (from-to)917-927
Number of pages11
JournalJournal of Molecular Biology
Volume322
Issue number5
DOIs
StatePublished - 2002

Keywords

  • CD spectroscopy
  • Natively unfolded protein
  • Protein stability
  • Protein structure
  • Transcription factor

Fingerprint

Dive into the research topics of 'p53 contains large unstructured regions in its native state'. Together they form a unique fingerprint.

Cite this