TY - GEN
T1 - P-TA
T2 - Findings of the 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024
AU - Yang, Shuo
AU - Yuan, Chenchen
AU - Rong, Yao
AU - Steinbauer, Felix
AU - Kasneci, Gjergji
N1 - Publisher Copyright:
© 2024 Association for Computational Linguistics.
PY - 2024
Y1 - 2024
N2 - A multitude of industries depend on accurate and reasonable tabular data augmentation for their business processes. Contemporary methodologies in generating tabular data revolve around utilizing Generative Adversarial Networks (GAN) or fine-tuning Large Language Models (LLM). However, GAN-based approaches are documented to produce samples with common-sense errors attributed to the absence of external knowledge. On the other hand, LLM-based methods exhibit a limited capacity to capture the disparities between synthesized and actual data distribution due to the absence of feedback from a discriminator during training. Furthermore, the decoding of LLM-based generation introduces gradient breakpoints, impeding the backpropagation of loss from a discriminator, thereby complicating the integration of these two approaches. To solve this challenge, we propose using proximal policy optimization (PPO) to apply GANs, guiding LLMs to enhance the probability distribution of tabular features. This approach enables the utilization of LLMs as generators for GANs in synthesizing tabular data. Our experiments demonstrate that PPO leads to an approximately 4% improvement in the accuracy of models trained on synthetically generated data over state-of-the-art across three real-world datasets.
AB - A multitude of industries depend on accurate and reasonable tabular data augmentation for their business processes. Contemporary methodologies in generating tabular data revolve around utilizing Generative Adversarial Networks (GAN) or fine-tuning Large Language Models (LLM). However, GAN-based approaches are documented to produce samples with common-sense errors attributed to the absence of external knowledge. On the other hand, LLM-based methods exhibit a limited capacity to capture the disparities between synthesized and actual data distribution due to the absence of feedback from a discriminator during training. Furthermore, the decoding of LLM-based generation introduces gradient breakpoints, impeding the backpropagation of loss from a discriminator, thereby complicating the integration of these two approaches. To solve this challenge, we propose using proximal policy optimization (PPO) to apply GANs, guiding LLMs to enhance the probability distribution of tabular features. This approach enables the utilization of LLMs as generators for GANs in synthesizing tabular data. Our experiments demonstrate that PPO leads to an approximately 4% improvement in the accuracy of models trained on synthetically generated data over state-of-the-art across three real-world datasets.
UR - http://www.scopus.com/inward/record.url?scp=85205316692&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85205316692
T3 - Proceedings of the Annual Meeting of the Association for Computational Linguistics
SP - 248
EP - 264
BT - 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 - Proceedings of the Conference
A2 - Ku, Lun-Wei
A2 - Martins, Andre
A2 - Srikumar, Vivek
PB - Association for Computational Linguistics (ACL)
Y2 - 11 August 2024 through 16 August 2024
ER -