Oxidative dehydrogenation of ethane on dynamically rearranging supported chloride catalysts

Christian A. Gärtner, André C. Van Veen, Johannes A. Lercher

Research output: Contribution to journalArticlepeer-review

56 Scopus citations

Abstract

Ethane is oxidatively dehydrogenated with a selectivity up to 95% on catalysts comprising a mixed molten alkali chloride supported on a mildly redox-active Dy2O3-doped MgO. The reactive oxyanionic OCl- species acting as active sites are catalytically formed by oxidation of Cl- at the MgO surface. Under reaction conditions this site is regenerated by O2, dissolving first in the alkali chloride melt, and in the second step dissociating and replenishing the oxygen vacancies on MgO. The oxyanion reactively dehydrogenates ethane at the melt-gas phase interface with nearly ideal selectivity. Thus, the reaction is concluded to proceed via two coupled steps following a Mars-van-Krevelen-mechanism at the solid-liquid and gas-liquid interface. The dissociation of O2 and/or the oxidation of Cl- at the melt-solid interface is concluded to have the lowest forward rate constants. The compositions of the oxide core and the molten chloride shell control the catalytic activity via the redox potential of the metal oxide and of the OCl-. Traces of water may be present in the molten chloride under reaction conditions, but the specific impact of this water is not obvious at present. The spatial separation of oxygen and ethane activation sites and the dynamic rearrangement of the surface anions and cations, preventing the exposure of coordinatively unsaturated cations, are concluded to be the origin of the surprisingly high olefin selectivity.

Original languageEnglish
Pages (from-to)12691-12701
Number of pages11
JournalJournal of the American Chemical Society
Volume136
Issue number36
DOIs
StatePublished - 10 Sep 2014

Fingerprint

Dive into the research topics of 'Oxidative dehydrogenation of ethane on dynamically rearranging supported chloride catalysts'. Together they form a unique fingerprint.

Cite this