TY - JOUR
T1 - Oxetane Cleavage Pathways in the Excited State
T2 - Photochemical Kinetic Resolution as an Approach to Enantiopure Oxetanes
AU - Pflaum, Niklas
AU - Pauls, Mike
AU - Kumar, Ajeet
AU - Kutta, Roger Jan
AU - Nuernberger, Patrick
AU - Hauer, Jürgen
AU - Bannwarth, Christoph
AU - Bach, Thorsten
N1 - Publisher Copyright:
© 2025 The Authors. Published by American Chemical Society.
PY - 2025/4/23
Y1 - 2025/4/23
N2 - Chiral spirocyclic oxetanes [2-oxo-spiro(3H-indole-3,2′-oxetanes)] were subjected to irradiation in the presence of a chiral thioxanthone catalyst (5 mol %) at λ = 398 nm. An efficient kinetic resolution was observed, which led to an enrichment of one oxetane enantiomer as the major enantiomer (15 examples, 37−50% yield, 93−99% ee). The minor enantiomer underwent decomposition, and the decomposition products were carefully analyzed. They arise from a photocycloreversion (retro-Paternò-Büchi reaction) into a carbonyl component and an olefin. The cycloreversion offers two cleavage pathways depending on whether a C−O bond scission or a C−C bond scission occurs at the spirocyclic carbon atom. The course of this reaction was elucidated by a suite of mechanistic, spectroscopic, and quantum chemical methods. In the absence of a catalyst, cleavage occurs exclusively by initial C−O bond scission, leading to formaldehyde and a tetrasubstituted olefin as cleavage products. Time-resolved spectroscopy on the femtosecond/picosecond time scale, synthetic experiments, and calculations suggest the reaction to occur from the first excited singlet state (S1). In the presence of a sensitizer, triplet states are populated, and the first excited triplet state (T1) is responsible for cleavage into an isatin and a 1,1-diarylethene by an initial C−C bond scission. The kinetic resolution is explained by the chiral catalyst recruiting predominantly one enantiomer of the spirocyclic oxindole. A two-point hydrogen-bonding interaction is responsible for the recognition of this enantiomer, as corroborated by NMR titration studies and quantum chemical calculations. Transient absorption studies on the nanosecond/microsecond time scale allowed for observing the quenching of the catalyst triplet by either one of the two oxetane enantiomers with a slight preference for the minor enantiomer. In a competing situation with both enantiomers present, energy transfer to the major enantiomer is suppressed initially by the better-binding minor enantiomer and─as the reaction progresses─by oxindole fragmentation products blocking the binding site of the catalyst.
AB - Chiral spirocyclic oxetanes [2-oxo-spiro(3H-indole-3,2′-oxetanes)] were subjected to irradiation in the presence of a chiral thioxanthone catalyst (5 mol %) at λ = 398 nm. An efficient kinetic resolution was observed, which led to an enrichment of one oxetane enantiomer as the major enantiomer (15 examples, 37−50% yield, 93−99% ee). The minor enantiomer underwent decomposition, and the decomposition products were carefully analyzed. They arise from a photocycloreversion (retro-Paternò-Büchi reaction) into a carbonyl component and an olefin. The cycloreversion offers two cleavage pathways depending on whether a C−O bond scission or a C−C bond scission occurs at the spirocyclic carbon atom. The course of this reaction was elucidated by a suite of mechanistic, spectroscopic, and quantum chemical methods. In the absence of a catalyst, cleavage occurs exclusively by initial C−O bond scission, leading to formaldehyde and a tetrasubstituted olefin as cleavage products. Time-resolved spectroscopy on the femtosecond/picosecond time scale, synthetic experiments, and calculations suggest the reaction to occur from the first excited singlet state (S1). In the presence of a sensitizer, triplet states are populated, and the first excited triplet state (T1) is responsible for cleavage into an isatin and a 1,1-diarylethene by an initial C−C bond scission. The kinetic resolution is explained by the chiral catalyst recruiting predominantly one enantiomer of the spirocyclic oxindole. A two-point hydrogen-bonding interaction is responsible for the recognition of this enantiomer, as corroborated by NMR titration studies and quantum chemical calculations. Transient absorption studies on the nanosecond/microsecond time scale allowed for observing the quenching of the catalyst triplet by either one of the two oxetane enantiomers with a slight preference for the minor enantiomer. In a competing situation with both enantiomers present, energy transfer to the major enantiomer is suppressed initially by the better-binding minor enantiomer and─as the reaction progresses─by oxindole fragmentation products blocking the binding site of the catalyst.
UR - http://www.scopus.com/inward/record.url?scp=105003472056&partnerID=8YFLogxK
U2 - 10.1021/jacs.5c02483
DO - 10.1021/jacs.5c02483
M3 - Article
AN - SCOPUS:105003472056
SN - 0002-7863
VL - 147
SP - 13893
EP - 13904
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 16
ER -