Overcoming the scalability challenges of epidemic simulations on blue waters

Jae Seung Yeom, Abhinav Bhatele, Keith Bisset, Eric Bohm, Abhishek Gupta, Laxmikant V. Kale, Madhav Marathe, Dimitrios S. Nikolopoulos, Martin Schulz, Lukasz Wesolowski

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

24 Scopus citations

Abstract

Modeling dynamical systems represents an important application class covering a wide range of disciplines including but not limited to biology, chemistry, finance, national security, and health care. Such applications typically involve large-scale, irregular graph processing, which makes them difficult to scale due to the evolutionary nature of their workload, irregular communication and load imbalance. EpiSimdemics is such an application simulating epidemic diffusion in extremely large and realistic social contact networks. It implements a graph-based system that captures dynamics among co-evolving entities. This paper presents an implementation of EpiSimdemics in Charm++ that enables future research by social, biological and computational scientists at unprecedented data and system scales. We present new methods for application-specific processing of graph data and demonstrate the effectiveness of these methods on a Cray XE6, specifically NCSA's Blue Waters system.

Original languageEnglish
Title of host publicationProceedings - IEEE 28th International Parallel and Distributed Processing Symposium, IPDPS 2014
PublisherIEEE Computer Society
Pages755-764
Number of pages10
ISBN (Print)9780769552071
DOIs
StatePublished - 2014
Externally publishedYes
Event28th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2014 - Phoenix, AZ, United States
Duration: 19 May 201423 May 2014

Publication series

NameProceedings of the International Parallel and Distributed Processing Symposium, IPDPS
ISSN (Print)1530-2075
ISSN (Electronic)2332-1237

Conference

Conference28th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2014
Country/TerritoryUnited States
CityPhoenix, AZ
Period19/05/1423/05/14

Keywords

  • contagion simulations
  • graph processing
  • performance
  • scalability
  • social contact networks

Fingerprint

Dive into the research topics of 'Overcoming the scalability challenges of epidemic simulations on blue waters'. Together they form a unique fingerprint.

Cite this