OrthrusPE: Runtime Reconfigurable Processing Elements for Binary Neural Networks

Nael Fasfous, Manoj Rohit Vemparala, Alexander Frickenstein, Walter Stechele

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

9 Scopus citations

Abstract

Recent advancements in Binary Neural Networks (BNNs) have yielded promising results, bringing them a step closer to their full-precision counterparts in terms of prediction accuracy. These advancements were brought about by additional arithmetic and binary operations, in the form of scale and shift operations (fixed-point) and convolutions with multiple weight and activation bases (binary). In this paper, we propose OrthrusPE, a runtime reconfigurable processing element (PE) which is capable of executing all the operations required by modern BNNs while improving resource utilization and power efficiency. More precisely, we exploit DSP48 blocks on off-the-shelf FPGAs to compute binary Hadamard products (for binary convolutions) and fixed-point arithmetic (for scaling, shifting, batch norm, and non-binary layers), thereby utilizing the same hardware resource for two distinct, critical modes of operation. Our experiments show that common PE implementations increase dynamic power consumption by 67%, while requiring 39% more lookup tables, when compared to an OrthrusPE implementation.

Original languageEnglish
Title of host publicationProceedings of the 2020 Design, Automation and Test in Europe Conference and Exhibition, DATE 2020
EditorsGiorgio Di Natale, Cristiana Bolchini, Elena-Ioana Vatajelu
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1662-1667
Number of pages6
ISBN (Electronic)9783981926347
DOIs
StatePublished - Mar 2020
Event2020 Design, Automation and Test in Europe Conference and Exhibition, DATE 2020 - Grenoble, France
Duration: 9 Mar 202013 Mar 2020

Publication series

NameProceedings of the 2020 Design, Automation and Test in Europe Conference and Exhibition, DATE 2020

Conference

Conference2020 Design, Automation and Test in Europe Conference and Exhibition, DATE 2020
Country/TerritoryFrance
CityGrenoble
Period9/03/2013/03/20

Fingerprint

Dive into the research topics of 'OrthrusPE: Runtime Reconfigurable Processing Elements for Binary Neural Networks'. Together they form a unique fingerprint.

Cite this