Orientation Control with Variable Stiffness Dynamical Systems

Youssef Michel, Matteo Saveriano, Fares J. Abu-Dakka, Dongheui Lee

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Recently, several approaches have attempted to combine motion generation and control in one loop to equip robots with reactive behaviors, that cannot be achieved with traditional time-indexed tracking controllers. These approaches however mainly focused on positions, neglecting the orientation part which can be crucial to many tasks e.g. screwing. In this work, we propose a control algorithm that adapts the robot's rotational motion and impedance in a closed-loop manner. Given a first-order Dynamical System representing an orientation motion plan and a desired rotational stiffness profile, our approach enables the robot to follow the reference motion with an interactive behavior specified by the desired stiffness, while always being aware of the current orientation, represented as a Unit Quaternion (UQ). We rely on the Lie algebra to formulate our algorithm, since unlike positions, UQ feature constraints that should be respected in the devised controller. We validate our proposed approach in multiple robot experiments, showcasing the ability of our controller to follow complex orientation profiles, react safely to perturbations, and fulfill physical interaction tasks.

Original languageEnglish
Title of host publication2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4457-4463
Number of pages7
ISBN (Electronic)9781665491907
DOIs
StatePublished - 2023
Externally publishedYes
Event2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023 - Detroit, United States
Duration: 1 Oct 20235 Oct 2023

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
Country/TerritoryUnited States
CityDetroit
Period1/10/235/10/23

Fingerprint

Dive into the research topics of 'Orientation Control with Variable Stiffness Dynamical Systems'. Together they form a unique fingerprint.

Cite this