TY - JOUR
T1 - Organic Reference Materials for Hydrogen, Carbon, and Nitrogen Stable Isotope-Ratio Measurements
T2 - Caffeines, n-Alkanes, Fatty Acid Methyl Esters, Glycines, l -Valines, Polyethylenes, and Oils
AU - Schimmelmann, Arndt
AU - Qi, Haiping
AU - Coplen, Tyler B.
AU - Brand, Willi A.
AU - Fong, Jon
AU - Meier-Augenstein, Wolfram
AU - Kemp, Helen F.
AU - Toman, Blaza
AU - Ackermann, Annika
AU - Assonov, Sergey
AU - Aerts-Bijma, Anita T.
AU - Brejcha, Ramona
AU - Chikaraishi, Yoshito
AU - Darwish, Tamim
AU - Elsner, Martin
AU - Gehre, Matthias
AU - Geilmann, Heike
AU - Gröning, Manfred
AU - Hélie, Jean François
AU - Herrero-Martín, Sara
AU - Meijer, Harro A.J.
AU - Sauer, Peter E.
AU - Sessions, Alex L.
AU - Werner, Roland A.
N1 - Publisher Copyright:
© 2016 American Chemical Society.
PY - 2016/5/3
Y1 - 2016/5/3
N2 - An international project developed, quality-tested, and determined isotope-δ values of 19 new organic reference materials (RMs) for hydrogen, carbon, and nitrogen stable isotope-ratio measurements, in addition to analyzing pre-existing RMs NBS 22 (oil), IAEA-CH-7 (polyethylene foil), and IAEA-600 (caffeine). These new RMs enable users to normalize measurements of samples to isotope-δ scales. The RMs span a range of δ2HVSMOW-SLAP values from -210.8 to +397.0 mUr or ‰, for δ13CVPDB-LSVEC from -40.81 to +0.49 mUr and for δ15NAir from -5.21 to +61.53 mUr. Many of the new RMs are amenable to gas and liquid chromatography. The RMs include triads of isotopically contrasting caffeines, C16 n-alkanes, n-C20-fatty acid methyl esters (FAMEs), glycines, and l-valines, together with polyethylene powder and string, one n-C17-FAME, a vacuum oil (NBS 22a) to replace NBS 22 oil, and a 2H-enriched vacuum oil. A total of 11 laboratories from 7 countries used multiple analytical approaches and instrumentation for 2-point isotopic normalization against international primary measurement standards. The use of reference waters in silver tubes allowed direct normalization of δ2H values of organic materials against isotopic reference waters following the principle of identical treatment. Bayesian statistical analysis yielded the mean values reported here. New RMs are numbered from USGS61 through USGS78, in addition to NBS 22a. Because of exchangeable hydrogen, amino acid RMs currently are recommended only for carbon- and nitrogen-isotope measurements. Some amino acids contain 13C and carbon-bound organic 2H-enrichments at different molecular sites to provide RMs for potential site-specific isotopic analysis in future studies.
AB - An international project developed, quality-tested, and determined isotope-δ values of 19 new organic reference materials (RMs) for hydrogen, carbon, and nitrogen stable isotope-ratio measurements, in addition to analyzing pre-existing RMs NBS 22 (oil), IAEA-CH-7 (polyethylene foil), and IAEA-600 (caffeine). These new RMs enable users to normalize measurements of samples to isotope-δ scales. The RMs span a range of δ2HVSMOW-SLAP values from -210.8 to +397.0 mUr or ‰, for δ13CVPDB-LSVEC from -40.81 to +0.49 mUr and for δ15NAir from -5.21 to +61.53 mUr. Many of the new RMs are amenable to gas and liquid chromatography. The RMs include triads of isotopically contrasting caffeines, C16 n-alkanes, n-C20-fatty acid methyl esters (FAMEs), glycines, and l-valines, together with polyethylene powder and string, one n-C17-FAME, a vacuum oil (NBS 22a) to replace NBS 22 oil, and a 2H-enriched vacuum oil. A total of 11 laboratories from 7 countries used multiple analytical approaches and instrumentation for 2-point isotopic normalization against international primary measurement standards. The use of reference waters in silver tubes allowed direct normalization of δ2H values of organic materials against isotopic reference waters following the principle of identical treatment. Bayesian statistical analysis yielded the mean values reported here. New RMs are numbered from USGS61 through USGS78, in addition to NBS 22a. Because of exchangeable hydrogen, amino acid RMs currently are recommended only for carbon- and nitrogen-isotope measurements. Some amino acids contain 13C and carbon-bound organic 2H-enrichments at different molecular sites to provide RMs for potential site-specific isotopic analysis in future studies.
UR - http://www.scopus.com/inward/record.url?scp=84964814536&partnerID=8YFLogxK
U2 - 10.1021/acs.analchem.5b04392
DO - 10.1021/acs.analchem.5b04392
M3 - Article
AN - SCOPUS:84964814536
SN - 0003-2700
VL - 88
SP - 4294
EP - 4302
JO - Analytical Chemistry
JF - Analytical Chemistry
IS - 8
ER -