Optimizing MRI contrast with B1 pulses using optimal control theory

Eric Van Reeth, Helene Rafiney, Michael Tesch, Steffen J. Glaser, Dominique Sugny

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

The variety of achievable contrasts by MRI makes it a highly flexible and valuable diagnostic tool. Contrast results from relaxation time differences, which are intrinsic properties of each tissue. Using optimal control theory, one can control the obtained contrast by applying excitation pulses that bring the magnetization in a user-defined target state. Simulation results are presented to illustrate the feasibility and the flexibility of using optimal contrast pulses. The robustness to experimental variable parameters such as field inhomogeneities is also studied. Finally, an in-vitro contrast experiment is performed on a small-animal MRI showing a reasonable match with the simulation results.

Original languageEnglish
Title of host publication2016 IEEE International Symposium on Biomedical Imaging
Subtitle of host publicationFrom Nano to Macro, ISBI 2016 - Proceedings
PublisherIEEE Computer Society
Pages310-313
Number of pages4
ISBN (Electronic)9781479923502
DOIs
StatePublished - 15 Jun 2016
Event2016 IEEE 13th International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2016 - Prague, Czech Republic
Duration: 13 Apr 201616 Apr 2016

Publication series

NameProceedings - International Symposium on Biomedical Imaging
Volume2016-June
ISSN (Print)1945-7928
ISSN (Electronic)1945-8452

Conference

Conference2016 IEEE 13th International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2016
Country/TerritoryCzech Republic
CityPrague
Period13/04/1616/04/16

Keywords

  • B1 pulse
  • MRI
  • ODIN
  • contrast
  • optimal control

Fingerprint

Dive into the research topics of 'Optimizing MRI contrast with B1 pulses using optimal control theory'. Together they form a unique fingerprint.

Cite this