@inproceedings{894966a7affc481b83eaec6ee35c9263,
title = "Optimized network configuration parameter assignment based on graph coloring",
abstract = "The trend for future mobile networks is to move away from Network Elements (NEs) delivered with specially tailored configurations towards off-the-shelf products. The configurations of NEs are automatically created with respect to their context including information on location and configuration of neighboring NEs. To minimize time-consuming and errorprone human interaction, automatic behavior is required for all stages of a NE's life cycle. The possibility to pre-assess the effects of configuration changes is inevitable in order to avoid service degradation caused by unnecessary reconfigurations. Graph coloring-based Physical Cell ID (PCID) assignment for LTE networks was introduced previously. The foundation on graph coloring theory allowed to transfer knowledge from this domain to the task of PCID assignment in order to pre-asses if an assignment is possible and how many PCIDs are required. Now the focus lies on adaptations of the basic approach to satisfy additional operator requirements such as safety margins. Those adaptations should provide equally good results in terms of used PCIDs with only minimal impact on costs and operation and maintenance tasks. Variations of the basic PCID assignment approach are discussed to address other types of problems.",
author = "T. Bandh and G. Carle and H. Sanneck and Schmelz, {L. C.} and R. Romeikat and B. Bauer",
year = "2010",
doi = "10.1109/NOMS.2010.5488432",
language = "English",
isbn = "9781424453672",
series = "Proceedings of the 2010 IEEE/IFIP Network Operations and Management Symposium, NOMS 2010",
publisher = "IEEE Computer Society",
pages = "40--47",
booktitle = "Proceedings of the 2010 IEEE/IFIP Network Operations and Management Symposium, NOMS 2010",
note = "12th IEEE/IFIP Network Operations and Management Symposium, NOMS 2010 ; Conference date: 19-04-2010 Through 23-04-2010",
}