Optimization of the aerodynamic flame stabilization for fuel flexible gas turbine premix burners

Stephan Burmberger, Thomas Sattelmayer

Research output: Contribution to journalArticlepeer-review

31 Scopus citations


A frequently employed method for aerodynamic flame stabilization in modern premixed low emission combustors is the breakdown of swirling flows; with carefully optimized tailoring of the swirler, a sudden transition in the flow field in the combustor can be achieved. A central recirculation zone evolves at the cross-sectional area change located at the entrance of the combustion chamber and anchors the flame in a fixed position. In general, premixed combustion in swirling flows can lead to flame flashback that is caused by combustion induced vortex breakdown near the centerline of the flow. In this case, the recirculation zone suddenly moves upstream and stabilizes in the premix zone (Kröner, 2007, "Flame Propagation in Swirling Flows-Effect of Local Extinction on the Combustion Induced Vortex Breakdown," Combust. Sci. Technol., 179, pp. 1385-1416). This type of flame flashback is caused by a strong interaction between the flame chemistry and vortex dynamics. The analysis of the vorticity transport equation shows that the axial gradient of the azimuthal vorticity is of particular importance for flame stability. A negative azimuthal vorticity gradient decelerates the core flow and finally causes vortex breakdown. Based on fundamental fluid mechanics, guidelines for a proper aerodynamic design of gas turbine combustors are given. These guidelines summarize the experience from several previous aerodynamic and combustion studies of the authors.

Original languageEnglish
Article number101501
JournalJournal of Engineering for Gas Turbines and Power
Issue number10
StatePublished - 2011


Dive into the research topics of 'Optimization of the aerodynamic flame stabilization for fuel flexible gas turbine premix burners'. Together they form a unique fingerprint.

Cite this