TY - JOUR
T1 - Optimization of protein isolation by proteomic qualification from Cutaneotrichosporon oleaginosus
AU - Awad, Dania
AU - Brueck, Thomas
N1 - Publisher Copyright:
© 2019, The Author(s).
PY - 2020/1/1
Y1 - 2020/1/1
N2 - In the last decades, microbial oils have been extensively investigated as a renewable platform for biofuel and oleochemical production. Offering a potent alternative to plant-based oils, oleaginous microorganisms have been the target of ongoing metabolic engineering aimed at increasing growth and lipid yields, in addition to specialty fatty acids. Discovery proteomics is an attractive tool for elucidating lipogenesis and identifying metabolic bottlenecks, feedback regulation, and competing biosynthetic pathways. One prominent microbial oil producer is Cutaneotrichosporon oleaginosus, due to its broad feedstock catabolism and high lipid yield. However, this yeast has a recalcitrant cell wall and high cell lipid content, which complicates efficient and unbiased protein extraction for downstream proteomic analysis. Optimization efforts of protein sample preparation from C. oleaginosus in the present study encompasses the comparison of 8 lysis methods, 13 extraction buffers, and 17 purification methods with respect to protein abundance, proteome coverage, applicability, and physiochemical properties (pI, MW, hydrophobicity in addition to COG, and GO analysis). The optimized protocol presented in this work entails a one-step extraction method utilizing an optimal lysis method (liquid homogenization), which is augmented with a superior extraction buffer (50 mM Tris, 8/2 M Urea/Thiourea, and 1% C7BzO), followed by either of 2 advantageous purification methods (hexane/ethanol or TCA/acetone), depending on subsequent applications and target studies. This work presents a significant step forward towards implementation of efficient C. oleaginosus proteome mining for the identification of potential targets for genetic optimization of this yeast to improve lipogenesis and production of specialty lipids. [Figure not available: see fulltext.].
AB - In the last decades, microbial oils have been extensively investigated as a renewable platform for biofuel and oleochemical production. Offering a potent alternative to plant-based oils, oleaginous microorganisms have been the target of ongoing metabolic engineering aimed at increasing growth and lipid yields, in addition to specialty fatty acids. Discovery proteomics is an attractive tool for elucidating lipogenesis and identifying metabolic bottlenecks, feedback regulation, and competing biosynthetic pathways. One prominent microbial oil producer is Cutaneotrichosporon oleaginosus, due to its broad feedstock catabolism and high lipid yield. However, this yeast has a recalcitrant cell wall and high cell lipid content, which complicates efficient and unbiased protein extraction for downstream proteomic analysis. Optimization efforts of protein sample preparation from C. oleaginosus in the present study encompasses the comparison of 8 lysis methods, 13 extraction buffers, and 17 purification methods with respect to protein abundance, proteome coverage, applicability, and physiochemical properties (pI, MW, hydrophobicity in addition to COG, and GO analysis). The optimized protocol presented in this work entails a one-step extraction method utilizing an optimal lysis method (liquid homogenization), which is augmented with a superior extraction buffer (50 mM Tris, 8/2 M Urea/Thiourea, and 1% C7BzO), followed by either of 2 advantageous purification methods (hexane/ethanol or TCA/acetone), depending on subsequent applications and target studies. This work presents a significant step forward towards implementation of efficient C. oleaginosus proteome mining for the identification of potential targets for genetic optimization of this yeast to improve lipogenesis and production of specialty lipids. [Figure not available: see fulltext.].
KW - C. oleaginosus
KW - Method optimization
KW - Oleaginous
KW - Protein purification
KW - Proteomics
KW - Yeast
UR - http://www.scopus.com/inward/record.url?scp=85076427169&partnerID=8YFLogxK
U2 - 10.1007/s00216-019-02254-7
DO - 10.1007/s00216-019-02254-7
M3 - Article
C2 - 31797019
AN - SCOPUS:85076427169
SN - 1618-2642
VL - 412
SP - 449
EP - 462
JO - Analytical and Bioanalytical Chemistry
JF - Analytical and Bioanalytical Chemistry
IS - 2
ER -