TY - JOUR
T1 - Optimization of intensity modulated radiotherapy under constraints for static and dynamic MLC delivery
AU - Alber, M.
AU - Nüsslin, F.
PY - 2001
Y1 - 2001
N2 - Multi-leaf collimators (MLCs) are emerging as the prevalent modality to apply intensity modulated radiotherapy (IMRT). Both the principle and the particular design of MLCs stipulate complex constraints on the practically applicable intensity modulated radiation fields. Most consequentially, the distribution of exposure times across the maximum field outline is either a piecewise constant function in the static mode or a piecewise linear function in the dynamic mode of driving an MLC. In view of clinical utility, the total leaf movement should be minimized, which requires that MLC-related constraints be considered in the dose optimization process. A method is proposed to achieve this for both static MLC fields and dynamic leaf close-in application. The method is an amendment to a generic gradient-based IMRT dose optimization algorithm and solves numerical problems related to the non-convexity of the MLC constraints, which can cause erratic behaviour of a gradient-based algorithm. It employs bistable penalty functions to select preferrable leaf configurations from the configuration space of the MLC, which is limited by specific design features. Together with an 'annealing' escape mechanism from local minima, the algorithm is capable of finding the optimum of an IMRT problem as leaf sequences with minimized leaf travel. In particular, the efficiency of static IMRT can be raised to the levels of unmodulated fields with very few field segments, thereby increasing the utility of IMRT in clinical practice.
AB - Multi-leaf collimators (MLCs) are emerging as the prevalent modality to apply intensity modulated radiotherapy (IMRT). Both the principle and the particular design of MLCs stipulate complex constraints on the practically applicable intensity modulated radiation fields. Most consequentially, the distribution of exposure times across the maximum field outline is either a piecewise constant function in the static mode or a piecewise linear function in the dynamic mode of driving an MLC. In view of clinical utility, the total leaf movement should be minimized, which requires that MLC-related constraints be considered in the dose optimization process. A method is proposed to achieve this for both static MLC fields and dynamic leaf close-in application. The method is an amendment to a generic gradient-based IMRT dose optimization algorithm and solves numerical problems related to the non-convexity of the MLC constraints, which can cause erratic behaviour of a gradient-based algorithm. It employs bistable penalty functions to select preferrable leaf configurations from the configuration space of the MLC, which is limited by specific design features. Together with an 'annealing' escape mechanism from local minima, the algorithm is capable of finding the optimum of an IMRT problem as leaf sequences with minimized leaf travel. In particular, the efficiency of static IMRT can be raised to the levels of unmodulated fields with very few field segments, thereby increasing the utility of IMRT in clinical practice.
UR - http://www.scopus.com/inward/record.url?scp=0035739248&partnerID=8YFLogxK
U2 - 10.1088/0031-9155/46/12/311
DO - 10.1088/0031-9155/46/12/311
M3 - Article
C2 - 11768502
AN - SCOPUS:0035739248
SN - 0031-9155
VL - 46
SP - 3229
EP - 3239
JO - Physics in Medicine and Biology
JF - Physics in Medicine and Biology
IS - 12
ER -