TY - GEN
T1 - Optimization of Graph Neural Networks
T2 - 38th International Conference on Machine Learning, ICML 2021
AU - Xu, Keyulu
AU - Zhang, Mozhi
AU - Jegelka, Stefanie
AU - Kawaguchi, Kenji
N1 - Publisher Copyright:
Copyright © 2021 by the author(s)
PY - 2021
Y1 - 2021
N2 - Graph Neural Networks (GNNs) have been studied through the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.
AB - Graph Neural Networks (GNNs) have been studied through the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.
UR - http://www.scopus.com/inward/record.url?scp=85161314463&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85161314463
T3 - Proceedings of Machine Learning Research
SP - 11592
EP - 11602
BT - Proceedings of the 38th International Conference on Machine Learning, ICML 2021
PB - ML Research Press
Y2 - 18 July 2021 through 24 July 2021
ER -