TY - JOUR
T1 - Optimization of an implicit large-eddy simulation method for underresolved incompressible flow simulations
AU - Schranner, Felix S.
AU - Rozov, Vladyslav
AU - Adams, Nikolaus A.
N1 - Publisher Copyright:
© 2015 by the Authors.
PY - 2016
Y1 - 2016
N2 - In engineering applications, resolution is often low. In these underresolved regions, the truncation error of the underlying numerical schemes strongly affects the solution. If the truncation error functions as a physically consistent subgrid-scale model (that is, it models the evolution of otherwise resolved scales), resolutionmayremain low. Thereby, computational efficiency is improved. The sixth-order adaptive central-upwind weighted essentially nonoscillatory scheme with implicit scale separation, denoted as WENO-CU6-M1, potentially allows for physically consistent implicit subgrid-scale modeling, when shaped accordingly. In this work, finding an optimal formulation of WENOCU6-M1 is considered within a deterministic design optimization framework. Possible surrogate modeling and sampling strategies are considered. Design optimization is based on evaluating the potential of a WENO-CU6-M1 scheme formulation to reproduce Kolmogorov scaling for a Taylor-Green vortex in its quasi-isotropic state. As in the absence of physical viscosity, kinetic energy dissipates exclusively due to the subgrid-scales, the Reynolds number is infinite, and the evolution of the flow is determined by proper subgrid-scale modeling. To complete the work, the effective numerical dissipation rate of theWENO-CU6-M1 model optimized for artificially compressible fluid flows is quantified, and it is compared to the original one. Not only is the zero viscosity limit considered, but the model behavior is benchmarked offdesign, for low to high Reynolds numbers. A comparison to an alternative explicit and implicit subgrid-scale model demonstrates its superior behavior for the chosen test flow.
AB - In engineering applications, resolution is often low. In these underresolved regions, the truncation error of the underlying numerical schemes strongly affects the solution. If the truncation error functions as a physically consistent subgrid-scale model (that is, it models the evolution of otherwise resolved scales), resolutionmayremain low. Thereby, computational efficiency is improved. The sixth-order adaptive central-upwind weighted essentially nonoscillatory scheme with implicit scale separation, denoted as WENO-CU6-M1, potentially allows for physically consistent implicit subgrid-scale modeling, when shaped accordingly. In this work, finding an optimal formulation of WENOCU6-M1 is considered within a deterministic design optimization framework. Possible surrogate modeling and sampling strategies are considered. Design optimization is based on evaluating the potential of a WENO-CU6-M1 scheme formulation to reproduce Kolmogorov scaling for a Taylor-Green vortex in its quasi-isotropic state. As in the absence of physical viscosity, kinetic energy dissipates exclusively due to the subgrid-scales, the Reynolds number is infinite, and the evolution of the flow is determined by proper subgrid-scale modeling. To complete the work, the effective numerical dissipation rate of theWENO-CU6-M1 model optimized for artificially compressible fluid flows is quantified, and it is compared to the original one. Not only is the zero viscosity limit considered, but the model behavior is benchmarked offdesign, for low to high Reynolds numbers. A comparison to an alternative explicit and implicit subgrid-scale model demonstrates its superior behavior for the chosen test flow.
UR - http://www.scopus.com/inward/record.url?scp=84966800492&partnerID=8YFLogxK
U2 - 10.2514/1.J054741
DO - 10.2514/1.J054741
M3 - Article
AN - SCOPUS:84966800492
SN - 0001-1452
VL - 54
SP - 1567
EP - 1577
JO - AIAA Journal
JF - AIAA Journal
IS - 5
ER -