Optimization and Interpretability of Graph Attention Networks for Small Sparse Graph Structures in Automotive Applications

Marion Neumeier, Andreas Tollkuhn, Sebastian Dorn, Michael Botsch, Wolfgang Utschick

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

For automotive applications, the Graph Attention Network (GAT) is a prominently used architecture to include relational information of a traffic scenario during feature embedding. As shown in this work, however, one of the most popular GAT realizations, namely GATv2, has potential pitfalls that hinder an optimal parameter learning. Especially for small and sparse graph structures a proper optimization is problematic. To surpass limitations, this work proposes architectural modifications of GATv2. In controlled experiments, it is shown that the proposed model adaptions improve prediction performance in a node-level regression task and make it more robust to parameter initialization. This work aims for a better understanding of the attention mechanism and analyzes its interpretability of identifying causal importance.

Original languageEnglish
Title of host publicationIV 2023 - IEEE Intelligent Vehicles Symposium, Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350346916
DOIs
StatePublished - 2023
Event34th IEEE Intelligent Vehicles Symposium, IV 2023 - Anchorage, United States
Duration: 4 Jun 20237 Jun 2023

Publication series

NameIEEE Intelligent Vehicles Symposium, Proceedings
Volume2023-June

Conference

Conference34th IEEE Intelligent Vehicles Symposium, IV 2023
Country/TerritoryUnited States
CityAnchorage
Period4/06/237/06/23

Fingerprint

Dive into the research topics of 'Optimization and Interpretability of Graph Attention Networks for Small Sparse Graph Structures in Automotive Applications'. Together they form a unique fingerprint.

Cite this