Optimal control for exploiting the natural dynamics of Variable Stiffness robots

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

65 Scopus citations

Abstract

In contrast to common rigid or actively compliant systems, Variable Stiffness Arms are capable of storing potential energy in their joint and convert it into kinetic energy, respectively speed. This capability is well known from humans and is a good example for the outstanding performance of biological systems. However, only since some years intrinsic compliance is considered as a key feature and not a drawback in robot design. Therefore, only very little work has been carried out on exploiting the natural dynamics of elastic arms for such explosive motion sequences. In this paper, we treat the problem of how to optimally achieve maximum link velocity at a given final time for Variable Stiffness Arms. We show that solutions to this problem lead to excitation motions, which enable the robot to move on the link side at much higher speed than on the motor side. In particular, the robot uses the dynamic transfer of elastic joint energy into link side kinetic energy for further acceleration. In our work we consider the practically relevant input and state constraints, and give experimental verification of the developed methods on the new DLR Hand-Arm system.

Original languageEnglish
Title of host publication2012 IEEE International Conference on Robotics and Automation, ICRA 2012
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3347-3354
Number of pages8
ISBN (Print)9781467314039
DOIs
StatePublished - 2012
Externally publishedYes
Event 2012 IEEE International Conference on Robotics and Automation, ICRA 2012 - Saint Paul, MN, United States
Duration: 14 May 201218 May 2012

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference 2012 IEEE International Conference on Robotics and Automation, ICRA 2012
Country/TerritoryUnited States
CitySaint Paul, MN
Period14/05/1218/05/12

Fingerprint

Dive into the research topics of 'Optimal control for exploiting the natural dynamics of Variable Stiffness robots'. Together they form a unique fingerprint.

Cite this