Optically Active InGaAs Axial Nanowire Heterostructures for Quantum Integrated Photonic Circuits

H. W. Jeong, A. Ajay, N. Mukhundhan, M. Döblinger, S. Sturm, M. Gómez Ruiz, R. Zell, T. Schreitmüller, J. Lähnemann, K. Müller-Caspary, J. J. Finley, G. Koblmüller

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We propose a monolithically integrated, vertical-cavity nanowire (NW) quantum light source coupled to a silicon (Si) quantum photonic integrated circuit (QPIC). Starting from modelling of the coupling efficiencies of an embedded quantum emitter and its dependencies on key geometrical parameters of NW/Si-waveguide dimensions, we further show experimental progress towards such a deterministic quantum light source using InGaAs emitters in a GaAs(Sb) NW cavity. Key understanding of the growth and optical properties of the InGaAs emitter is provided from systematic structure-property relationship studies.

Original languageEnglish
Title of host publication2024 Conference on Lasers and Electro-Optics, CLEO 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781957171395
StatePublished - 2024
Event2024 Conference on Lasers and Electro-Optics, CLEO 2024 - Charlotte, United States
Duration: 7 May 202410 May 2024

Publication series

Name2024 Conference on Lasers and Electro-Optics, CLEO 2024

Conference

Conference2024 Conference on Lasers and Electro-Optics, CLEO 2024
Country/TerritoryUnited States
CityCharlotte
Period7/05/2410/05/24

Keywords

  • Geometrical optics
  • Indium gallium arsenide
  • Integrated circuit modeling
  • Light sources
  • Photonic integrated circuits
  • Photonics
  • Silicon
  • Stimulated emission
  • Systematics
  • Vertical cavity surface emitting lasers

Fingerprint

Dive into the research topics of 'Optically Active InGaAs Axial Nanowire Heterostructures for Quantum Integrated Photonic Circuits'. Together they form a unique fingerprint.

Cite this