TY - JOUR
T1 - Optical imaging of apoptosis as a biomarker of tumor response to chemotherapy
AU - Schellenberger, Eyk A.
AU - Bogdanov, Alexei
AU - Petrovsky, Alexander
AU - Ntziachristos, Vasilis
AU - Weissleder, Ralph
AU - Josephson, Lee
PY - 2003
Y1 - 2003
N2 - A rapid and accurate assessment of the antitumor efficacy of new therapeutic drugs could speed up drug discovery and improve clinical decision making. Based on the hypothesis that most effective antitumor agents induce apoptosis, we developed a near-infrared fluorescent (NIRF) annexin V to be used for optical sensing of tumor environments. To demonstrate probe specificity, we developed both an active (i.e., apoptosis-recognizing) and an inactive form of annexin V with very similar properties (to account for nonspecific tumor accumulation), and tested the agents in nude mice each bearing a cyclophosphamide (CPA) chemosensitive (LLC) and a chemoresistant LLC (CR-LLC). After injection with active annexin V, the tumor-annexin V ratio (TAR; tumor NIRF/background NIRF) for untreated mice was 1.22 ± 0.34 for LLC and 1.43 ± 0.53 for CR-LLC (n = 4). The LLC of CPA-treated mice had significant elevations of TAR (2.56 ± 0.29, P = .001, n = 4), but only a moderate increase was obtained for the CR-LLC (TAR = 1.89 ± 0.19, P = .183). The in vivo measurements correlated well with terminal deoxyribosyl transferase-mediated dUTP nick end labeling indexes. When inactive Cy-annexin V was used, with or without CPA treatment and in both CCL and CR-CCL tumors, tumor NIRF values ranged from 0.91 to 1.17 (i.e., tumor were equal to background). We conclude that active Cy-annexin V and surface reflectance fluorescence imaging provide a nonradioactive, semiquantitative method of determining chemosensitivity in LLC xenografts. The method maybe used to image pharmacologic responses in other animal models and, potentially, may permit the clinical imaging of apoptosis with noninvasive or minimally invasive instrumentation.
AB - A rapid and accurate assessment of the antitumor efficacy of new therapeutic drugs could speed up drug discovery and improve clinical decision making. Based on the hypothesis that most effective antitumor agents induce apoptosis, we developed a near-infrared fluorescent (NIRF) annexin V to be used for optical sensing of tumor environments. To demonstrate probe specificity, we developed both an active (i.e., apoptosis-recognizing) and an inactive form of annexin V with very similar properties (to account for nonspecific tumor accumulation), and tested the agents in nude mice each bearing a cyclophosphamide (CPA) chemosensitive (LLC) and a chemoresistant LLC (CR-LLC). After injection with active annexin V, the tumor-annexin V ratio (TAR; tumor NIRF/background NIRF) for untreated mice was 1.22 ± 0.34 for LLC and 1.43 ± 0.53 for CR-LLC (n = 4). The LLC of CPA-treated mice had significant elevations of TAR (2.56 ± 0.29, P = .001, n = 4), but only a moderate increase was obtained for the CR-LLC (TAR = 1.89 ± 0.19, P = .183). The in vivo measurements correlated well with terminal deoxyribosyl transferase-mediated dUTP nick end labeling indexes. When inactive Cy-annexin V was used, with or without CPA treatment and in both CCL and CR-CCL tumors, tumor NIRF values ranged from 0.91 to 1.17 (i.e., tumor were equal to background). We conclude that active Cy-annexin V and surface reflectance fluorescence imaging provide a nonradioactive, semiquantitative method of determining chemosensitivity in LLC xenografts. The method maybe used to image pharmacologic responses in other animal models and, potentially, may permit the clinical imaging of apoptosis with noninvasive or minimally invasive instrumentation.
KW - Annexin V(optical imaging
KW - Apoptosis
KW - Chemotherapy
KW - Tumor
UR - http://www.scopus.com/inward/record.url?scp=0013162104&partnerID=8YFLogxK
U2 - 10.1016/s1476-5586(03)80050-7
DO - 10.1016/s1476-5586(03)80050-7
M3 - Article
C2 - 12869301
AN - SCOPUS:0013162104
SN - 1522-8002
VL - 5
SP - 187
EP - 192
JO - Neoplasia
JF - Neoplasia
IS - 3
ER -