Optical gap and fundamental gap of oligoynes and carbyne

Johannes Zirzlmeier, Stephen Schrettl, Jan C. Brauer, Emmanuel Contal, Laurent Vannay, Éric Brémond, Eike Jahnke, Dirk M. Guldi, Clémence Corminboeuf, Rik R. Tykwinski, Holger Frauenrath

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

The optoelectronic properties of various carbon allotropes and nanomaterials have been well established, while the purely sp-hybridized carbyne remains synthetically inaccessible. Its properties have therefore frequently been extrapolated from those of defined oligomers. Most analyses have, however, focused on the main optical transitions in UV-Vis spectroscopy, neglecting the frequently observed weaker optical bands at significantly lower energies. Here, we report a systematic photophysical analysis as well as computations on two homologous series of oligoynes that allow us to elucidate the nature of these weaker transitions and the intrinsic photophysical properties of oligoynes. Based on these results, we reassess the estimates for both the optical and fundamental gap of carbyne to below 1.6 eV, significantly lower than previously suggested by experimental studies of oligoynes.

Original languageEnglish
Article number4797
JournalNature Communications
Volume11
Issue number1
DOIs
StatePublished - 1 Dec 2020
Externally publishedYes

Fingerprint

Dive into the research topics of 'Optical gap and fundamental gap of oligoynes and carbyne'. Together they form a unique fingerprint.

Cite this