Optical control of nonlinearly dressed states in an individual quantum dot

P. L. Ardelt, M. Koller, T. Simmet, L. Hanschke, A. Bechtold, A. Regler, J. Wierzbowski, H. Riedl, J. J. Finley, K. Müller

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

We report nonlinear resonance fluorescence of an individual semiconductor quantum dot. By driving a single semiconductor quantum dot via a two-photon transition, we probe the linewidth of two-photon excitation processes and show that, similar to their single-photon counterparts, they are close to being Fourier limited at low temperatures. The evolution of the population of excitonic states with increasing Rabi energy exhibits a clear S-shaped behavior, indicative of the nonlinear response via the two-photon excitation process. Numerical calculations of the nonlinear response using a four-level atomic system representing the manifold of excitonic and biexcitonic states in the quantum dot are in excellent agreement with our experiments and reveal the effect of interactions with LA phonons in the solid-state environment. Finally, we demonstrate the formation of dressed states emerging from a nonlinear two-photon interaction between the quantum dot and the optical excitation field. The nonlinear optical dressing induces a mixing of all four excitonic states that allows direct optical tuning of the polarization selection rules and energies of the dressed states in the artificial atom. We expect our results to play a pivotal role for the generation of nonclassical photon pairs desired for applications in quantum communication and fundamental experiments on quantum optical properties of photons.

Original languageEnglish
Article number165305
JournalPhysical Review B
Volume93
Issue number16
DOIs
StatePublished - 11 Apr 2016

Fingerprint

Dive into the research topics of 'Optical control of nonlinearly dressed states in an individual quantum dot'. Together they form a unique fingerprint.

Cite this