Open-Loop and Feedback Nash Trajectories for Competitive Racing with iLQGames

Matthias Rowold, Alexander Langmann, Boris Lohmann, Johannes Betz

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Interaction-aware trajectory planning is crucial for closing the gap between autonomous racing cars and human racing drivers. Prior work has applied game theory as it provides equilibrium concepts for non-cooperative dynamic problems. With this contribution, we formulate racing as a dynamic game and employ a variant of iLQR-called iLQGames-to solve the game. iLQGames finds trajectories for all players that satisfy the equilibrium conditions for a linear-quadratic approximation of the game and has been previously applied in traffic scenarios. We analyze the algorithm's applicability for trajectory planning in racing scenarios and evaluate it based on interaction awareness, competitiveness, and safety. With the ability of iLQGames to solve for open-loop and feedback Nash equilibria, we compare the behavioral outcomes of the two equilibrium concepts in simple scenarios on a straight track section.

Original languageEnglish
Title of host publication2024 IEEE 27th International Conference on Intelligent Transportation Systems, ITSC 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1827-1834
Number of pages8
ISBN (Electronic)9798331505929
DOIs
StatePublished - 2024
Event27th IEEE International Conference on Intelligent Transportation Systems, ITSC 2024 - Edmonton, Canada
Duration: 24 Sep 202427 Sep 2024

Publication series

NameIEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC
ISSN (Print)2153-0009
ISSN (Electronic)2153-0017

Conference

Conference27th IEEE International Conference on Intelligent Transportation Systems, ITSC 2024
Country/TerritoryCanada
CityEdmonton
Period24/09/2427/09/24

Fingerprint

Dive into the research topics of 'Open-Loop and Feedback Nash Trajectories for Competitive Racing with iLQGames'. Together they form a unique fingerprint.

Cite this