Online learning of patch perspective rectification for efficient object detection

Stefan Hinterstoisser, Selim Benhimane, Nassir Navab, Pascal Fua, Vincent Lepetit

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

39 Scopus citations

Abstract

For a large class of applications, there is time to train the system. In this paper, we propose a learning-based approach to patch perspective rectification, and show that it is both faster and more reliable than state-of-the-art ad hoc affine region detection methods. Our method performs in three steps. First, a classifier provides for every keypoint not only its identity, but also a first estimate of its transformation. This estimate allows carrying out, in the second step, an accurate perspective rectification using linear predictors. We show that both the classifier and the linear predictors can be trained online, which makes the approach convenient. The last step is a fast verification -made possible by the accurate perspective rectification- of the patch identity and its sub-pixel precision position estimation. We test our approach on real-time 3D object detection and tracking applications. We show that we can use the estimated perspective rectifications to determine the object pose and as a result, we need much fewer correspondences to obtain a precise pose estimation.

Original languageEnglish
Title of host publication26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
DOIs
StatePublished - 2008
Event26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR - Anchorage, AK, United States
Duration: 23 Jun 200828 Jun 2008

Publication series

Name26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR

Conference

Conference26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
Country/TerritoryUnited States
CityAnchorage, AK
Period23/06/0828/06/08

Fingerprint

Dive into the research topics of 'Online learning of patch perspective rectification for efficient object detection'. Together they form a unique fingerprint.

Cite this