TY - GEN
T1 - Online learning of patch perspective rectification for efficient object detection
AU - Hinterstoisser, Stefan
AU - Benhimane, Selim
AU - Navab, Nassir
AU - Fua, Pascal
AU - Lepetit, Vincent
PY - 2008
Y1 - 2008
N2 - For a large class of applications, there is time to train the system. In this paper, we propose a learning-based approach to patch perspective rectification, and show that it is both faster and more reliable than state-of-the-art ad hoc affine region detection methods. Our method performs in three steps. First, a classifier provides for every keypoint not only its identity, but also a first estimate of its transformation. This estimate allows carrying out, in the second step, an accurate perspective rectification using linear predictors. We show that both the classifier and the linear predictors can be trained online, which makes the approach convenient. The last step is a fast verification -made possible by the accurate perspective rectification- of the patch identity and its sub-pixel precision position estimation. We test our approach on real-time 3D object detection and tracking applications. We show that we can use the estimated perspective rectifications to determine the object pose and as a result, we need much fewer correspondences to obtain a precise pose estimation.
AB - For a large class of applications, there is time to train the system. In this paper, we propose a learning-based approach to patch perspective rectification, and show that it is both faster and more reliable than state-of-the-art ad hoc affine region detection methods. Our method performs in three steps. First, a classifier provides for every keypoint not only its identity, but also a first estimate of its transformation. This estimate allows carrying out, in the second step, an accurate perspective rectification using linear predictors. We show that both the classifier and the linear predictors can be trained online, which makes the approach convenient. The last step is a fast verification -made possible by the accurate perspective rectification- of the patch identity and its sub-pixel precision position estimation. We test our approach on real-time 3D object detection and tracking applications. We show that we can use the estimated perspective rectifications to determine the object pose and as a result, we need much fewer correspondences to obtain a precise pose estimation.
UR - http://www.scopus.com/inward/record.url?scp=51949095806&partnerID=8YFLogxK
U2 - 10.1109/CVPR.2008.4587514
DO - 10.1109/CVPR.2008.4587514
M3 - Conference contribution
AN - SCOPUS:51949095806
SN - 9781424422432
T3 - 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
BT - 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
T2 - 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
Y2 - 23 June 2008 through 28 June 2008
ER -