Online iterative learning control of zero-moment point for biped walking stabilization

Kai Hu, Christian Ott, Dongheui Lee

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

8 Scopus citations

Abstract

Biped walking control based on simplified models relies much on online feedback stabilizers to compensate the zero-moment point (ZMP) error which partially comes from the model inconsistency of pattern generation. Inspired by the fact that human improves the performance by practicing a task for multiple times, this paper presents an online learning control framework for improving the robustness during the dominant repetitive phases of walking. The key idea is to learn a compensative feedforward ZMP term from previous ZMP error trajectories in order to achieve better ZMP tracking. Based on the iterative learning control theory, the learning process is conducted online continuously with minimal iteration of two footsteps, which can practically run in parallel with state-of-the-art walking controllers. A varying forgetting factor is designed to reduce the influence of the landing impact. Convergence of the learning control algorithm and improved ZMP tracking performance is verified both in dynamics simulation and experiment on the DLR humanoid robot TORO.

Original languageEnglish
Title of host publication2015 IEEE International Conference on Robotics and Automation, ICRA 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5127-5133
Number of pages7
EditionJune
ISBN (Electronic)9781479969234
DOIs
StatePublished - 29 Jun 2015
Externally publishedYes
Event2015 IEEE International Conference on Robotics and Automation, ICRA 2015 - Seattle, United States
Duration: 26 May 201530 May 2015

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
NumberJune
Volume2015-June
ISSN (Print)1050-4729

Conference

Conference2015 IEEE International Conference on Robotics and Automation, ICRA 2015
Country/TerritoryUnited States
CitySeattle
Period26/05/1530/05/15

Fingerprint

Dive into the research topics of 'Online iterative learning control of zero-moment point for biped walking stabilization'. Together they form a unique fingerprint.

Cite this