One-pass Synthesis for Field-coupled Nanocomputing Technologies

Marcel Walter, Winston Haaswijk, Robert Wille, Frank Sill Torres, Rolf Drechsler

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

13 Scopus citations

Abstract

Field-coupled Nanocomputing (FCN) is a class of post-CMOS emerging technologies, which promises to overcome certain physical limitations of conventional solutions such as CMOS by allowing for high computational throughput with low power dissipation. Despite their promises, the design of corresponding FCN circuits is still in its infancy. In fact, state-of-the-art solutions still heavily rely on conventional synthesis approaches that do not take the tight physical constraints of FCN circuits (particularly with respect to routability and clocking) into account. Instead, physical design is conducted in a second step in which a classical logic network is mapped onto an FCN layout. Using this two-stage approach with a classical and FCN-oblivious logic network as an intermediate result, frequently leads to substantial quality loss or completely impractical results. In this work, we propose a one-pass synthesis scheme for FCN circuits, which conducts both steps, synthesis and physical design, in a single run. For the first time, this allows to generate exact, i. e., minimal FCN circuits for a given functionality.

Original languageEnglish
Title of host publicationProceedings of the 26th Asia and South Pacific Design Automation Conference, ASP-DAC 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages574-580
Number of pages7
ISBN (Electronic)9781450379991
DOIs
StatePublished - 18 Jan 2021
Externally publishedYes
Event26th Asia and South Pacific Design Automation Conference, ASP-DAC 2021 - Virtual, Online, Japan
Duration: 18 Jan 202121 Jan 2021

Publication series

NameProceedings of the Asia and South Pacific Design Automation Conference, ASP-DAC

Conference

Conference26th Asia and South Pacific Design Automation Conference, ASP-DAC 2021
Country/TerritoryJapan
CityVirtual, Online
Period18/01/2121/01/21

Fingerprint

Dive into the research topics of 'One-pass Synthesis for Field-coupled Nanocomputing Technologies'. Together they form a unique fingerprint.

Cite this