On the value of coordination in network design

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

27 Scopus citations

Abstract

We study network design games where n self-interested agents have to form a network by purchasing links from a given set of edges. We consider Shapley cost sharing mechanisms that split the cost of an edge in a fair manner among the agents using the edge. It is well known that the price of anarchy of these games is as high as n. Therefore, recent research has focused on evaluating the price of stability, i.e. the cost of the best Nash equilibrium relative to the social optimum. In this paper we investigate to which extent coordination among agents can improve the quality of solutions. We resort to the concept of strong Nash equilibria, which were introduced by Aumann and are resilient to deviations by coalitions of agents. We analyze the price of anarchy of strong Nash equilibria and develop lower and upper bounds for unweighted and weighted games in both directed and undirected graphs. These bounds are tight or nearly tight for many scenarios. It shows that using coordination, the price of anarchy drops from linear to logarithmic bounds. We complement these results by also proving the first superconstant lower bound on the price of stability of standard equilibria (without coordination) in undirected graphs. More specifically, we show a lower bound of Ω(log W/log log W) for weighted games, where W is the total weight of all the agents. This almost matches the known upper bound of O(log W). Our results imply that, for most settings, the worst-case performance ratios of strong coordinated equilibria are essentially always as good as the performance ratios of the best equilibria achievable without coordination. These settings include unweighted games in directed graphs as well as weighted games in both directed and undirected graphs.

Original languageEnglish
Title of host publicationProceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms
Pages294-303
Number of pages10
StatePublished - 2008
Externally publishedYes
Event19th Annual ACM-SIAM Symposium on Discrete Algorithms - San Francisco, CA, United States
Duration: 20 Jan 200822 Jan 2008

Publication series

NameProceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms

Conference

Conference19th Annual ACM-SIAM Symposium on Discrete Algorithms
Country/TerritoryUnited States
CitySan Francisco, CA
Period20/01/0822/01/08

Fingerprint

Dive into the research topics of 'On the value of coordination in network design'. Together they form a unique fingerprint.

Cite this