TY - JOUR
T1 - On the potential of micro-flow LC-MS/MS in proteomics
AU - Bian, Yangyang
AU - Gao, Chunli
AU - Kuster, Bernhard
N1 - Publisher Copyright:
© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
PY - 2022
Y1 - 2022
N2 - Introduction: Due to its excellent sensitivity, nano-flow liquid chromatography tandem mass spectrometry (LC-MS/MS) is the mainstay in proteome research; however, this comes at the expense of limited throughput and robustness. In contrast, micro-flow LC-MS/MS enables high-throughput, robustness, quantitative reproducibility, and precision while retaining a moderate degree of sensitivity. Such features make it an attractive technology for a wide range of proteomic applications. In particular, large-scale projects involving the analysis of hundreds to thousands of samples. Areas covered: This review summarizes the history of chromatographic separation in discovery proteomics with a focus on micro-flow LC-MS/MS, discusses the current state-of-the-art, highlights advances in column development and instrumentation, and provides guidance on which LC flow best supports different types of proteomic applications. Expert opinion: Micro-flow LC-MS/MS will replace nano-flow LC-MS/MS in many proteomic applications, particularly when sample quantities are not limited and sample cohorts are large. Examples include clinical analyses of body fluids, tissues, drug discovery and chemical biology investigations, plus systems biology projects across all kingdoms of life. When combined with rapid and sensitive MS, intelligent data acquisition, and informatics approaches, it will soon become possible to analyze large cohorts of more than 10,000 samples in a comprehensive and fully quantitative fashion.
AB - Introduction: Due to its excellent sensitivity, nano-flow liquid chromatography tandem mass spectrometry (LC-MS/MS) is the mainstay in proteome research; however, this comes at the expense of limited throughput and robustness. In contrast, micro-flow LC-MS/MS enables high-throughput, robustness, quantitative reproducibility, and precision while retaining a moderate degree of sensitivity. Such features make it an attractive technology for a wide range of proteomic applications. In particular, large-scale projects involving the analysis of hundreds to thousands of samples. Areas covered: This review summarizes the history of chromatographic separation in discovery proteomics with a focus on micro-flow LC-MS/MS, discusses the current state-of-the-art, highlights advances in column development and instrumentation, and provides guidance on which LC flow best supports different types of proteomic applications. Expert opinion: Micro-flow LC-MS/MS will replace nano-flow LC-MS/MS in many proteomic applications, particularly when sample quantities are not limited and sample cohorts are large. Examples include clinical analyses of body fluids, tissues, drug discovery and chemical biology investigations, plus systems biology projects across all kingdoms of life. When combined with rapid and sensitive MS, intelligent data acquisition, and informatics approaches, it will soon become possible to analyze large cohorts of more than 10,000 samples in a comprehensive and fully quantitative fashion.
KW - Proteomics
KW - micro-flow LC-MS/MS
KW - nano-flow LC-MS/MS
KW - protein identification
KW - protein quantification
UR - http://www.scopus.com/inward/record.url?scp=85140135170&partnerID=8YFLogxK
U2 - 10.1080/14789450.2022.2134780
DO - 10.1080/14789450.2022.2134780
M3 - Review article
C2 - 36221222
AN - SCOPUS:85140135170
SN - 1478-9450
VL - 19
SP - 153
EP - 164
JO - Expert Review of Proteomics
JF - Expert Review of Proteomics
IS - 3
ER -