TY - JOUR
T1 - On the Effectiveness of OTFS for Joint Radar Parameter Estimation and Communication
AU - Gaudio, Lorenzo
AU - Kobayashi, Mari
AU - Caire, Giuseppe
AU - Colavolpe, Giulio
N1 - Publisher Copyright:
© 2002-2012 IEEE.
PY - 2020/9
Y1 - 2020/9
N2 - We consider a joint radar parameter estimation and communication system using orthogonal time frequency space (OTFS) modulation. The scenario is motivated by vehicular applications where a vehicle (or the infrastructure) equipped with a mono-static radar wishes to communicate data to its target receiver, while estimating parameters of interest related to this receiver. Provided that the radar-equipped transmitter is ready to send data to its target receiver, this setting naturally assumes that the receiver has been already detected. In a point-to-point communication setting over multipath time-frequency selective channels, we study the joint radar and communication system from two perspectives, i.e., the radar parameter estimation at the transmitter as well as the data detection at the receiver. For the radar parameter estimation part, we derive an efficient approximated Maximum Likelihood algorithm and the corresponding Cramér-Rao lower bound for range and velocity estimation. Numerical examples demonstrate that multi-carrier digital formats such as OTFS can achieve as accurate radar estimation as state-of-the-art radar waveforms such as frequency-modulated continuous wave (FMCW). For the data detection part, we focus on separate detection and decoding and consider a soft-output detector that exploits efficiently the channel sparsity in the Doppler-delay domain. We quantify the detector performance in terms of its pragmatic capacity, i.e., the achievable rate of the channel induced by the signal constellation and the detector soft-output. Simulations show that the proposed scheme outperforms concurrent state-of-the-art solutions. Overall, our work shows that a suitable digitally modulated waveform enables to efficiently operate joint radar parameter estimation and communication by achieving full information rate of the modulation and near-optimal radar estimation performance. Furthermore, OTFS appears to be particularly suited to the scope.
AB - We consider a joint radar parameter estimation and communication system using orthogonal time frequency space (OTFS) modulation. The scenario is motivated by vehicular applications where a vehicle (or the infrastructure) equipped with a mono-static radar wishes to communicate data to its target receiver, while estimating parameters of interest related to this receiver. Provided that the radar-equipped transmitter is ready to send data to its target receiver, this setting naturally assumes that the receiver has been already detected. In a point-to-point communication setting over multipath time-frequency selective channels, we study the joint radar and communication system from two perspectives, i.e., the radar parameter estimation at the transmitter as well as the data detection at the receiver. For the radar parameter estimation part, we derive an efficient approximated Maximum Likelihood algorithm and the corresponding Cramér-Rao lower bound for range and velocity estimation. Numerical examples demonstrate that multi-carrier digital formats such as OTFS can achieve as accurate radar estimation as state-of-the-art radar waveforms such as frequency-modulated continuous wave (FMCW). For the data detection part, we focus on separate detection and decoding and consider a soft-output detector that exploits efficiently the channel sparsity in the Doppler-delay domain. We quantify the detector performance in terms of its pragmatic capacity, i.e., the achievable rate of the channel induced by the signal constellation and the detector soft-output. Simulations show that the proposed scheme outperforms concurrent state-of-the-art solutions. Overall, our work shows that a suitable digitally modulated waveform enables to efficiently operate joint radar parameter estimation and communication by achieving full information rate of the modulation and near-optimal radar estimation performance. Furthermore, OTFS appears to be particularly suited to the scope.
KW - achievable rate
KW - joint radar parameter estimation and communication
KW - maximum likelihood detection
KW - message-passing
KW - OTFS
UR - http://www.scopus.com/inward/record.url?scp=85091137598&partnerID=8YFLogxK
U2 - 10.1109/TWC.2020.2998583
DO - 10.1109/TWC.2020.2998583
M3 - Article
AN - SCOPUS:85091137598
SN - 1536-1276
VL - 19
SP - 5951
EP - 5965
JO - IEEE Transactions on Wireless Communications
JF - IEEE Transactions on Wireless Communications
IS - 9
M1 - 9109735
ER -