On Learning the Tail Quantiles of Driving Behavior Distributions via Quantile Regression and Flows

Jia Yu Tee, Oliver De Candido, Wolfgang Utschick, Philipp Geiger

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Towards safe autonomous driving (AD), we consider the problem of learning models that accurately capture the diversity and tail quantiles of human driver behavior probability distributions, in interaction with an AD vehicle. Such models, which predict drivers' continuous actions from their states, are particularly relevant for closing the gap between AD agent simulations and reality. To this end, we adapt two flexible quantile learning frameworks for this setting that avoid strong distributional assumptions: (1) quantile regression (based on the titled absolute loss), and (2) autoregressive quantile flows (a version of normalizing flows). Training happens in a behavior cloning-fashion. We use the highD dataset consisting of driver trajectories on several highways. We evaluate our approach in a one-step acceleration prediction task, and in multi-step driver simulation rollouts. We report quantitative results using the tilted absolute loss as metric, give qualitative examples showing that realistic extremal behavior can be learned, and discuss the main insights.

Original languageEnglish
Title of host publication2023 IEEE 26th International Conference on Intelligent Transportation Systems, ITSC 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5876-5883
Number of pages8
ISBN (Electronic)9798350399462
DOIs
StatePublished - 2023
Event26th IEEE International Conference on Intelligent Transportation Systems, ITSC 2023 - Bilbao, Spain
Duration: 24 Sep 202328 Sep 2023

Publication series

NameIEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC
ISSN (Print)2153-0009
ISSN (Electronic)2153-0017

Conference

Conference26th IEEE International Conference on Intelligent Transportation Systems, ITSC 2023
Country/TerritorySpain
CityBilbao
Period24/09/2328/09/23

Fingerprint

Dive into the research topics of 'On Learning the Tail Quantiles of Driving Behavior Distributions via Quantile Regression and Flows'. Together they form a unique fingerprint.

Cite this