On guillotine separable packings for the two-dimensional geometric knapsack problem

Arindam Khan, Arnab Maiti, Amatya Sharma, Andreas Wiese

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

10 Scopus citations

Abstract

In two-dimensional geometric knapsack problem, we are given a set of n axis-aligned rectangular items and an axis-aligned square-shaped knapsack. Each item has integral width, integral height and an associated integral profit. The goal is to find a (non-overlapping axis-aligned) packing of a maximum profit subset of rectangles into the knapsack. A well-studied and frequently used constraint in practice is to allow only packings that are guillotine separable, i.e., every rectangle in the packing can be obtained by recursively applying a sequence of edge-to-edge axis-parallel cuts that do not intersect any item of the solution. In this paper we study approximation algorithms for the geometric knapsack problem under guillotine cut constraints. We present polynomial time (1 + ε)-approximation algorithms for the cases with and without allowing rotations by 90 degrees, assuming that all input numeric data are polynomially bounded in n. In comparison, the best-known approximation factor for this setting is 3 + ε [Jansen-Zhang, SODA 2004], even in the cardinality case where all items have the same profit. Our main technical contribution is a structural lemma which shows that any guillotine packing can be converted into another structured guillotine packing with almost the same profit. In this packing, each item is completely contained in one of a constant number of boxes and L-shaped regions, inside which the items are placed by a simple greedy routine. In particular, we provide a clean sufficient condition when such a packing obeys the guillotine cut constraints which might be useful for other settings where these constraints are imposed.

Original languageEnglish
Title of host publication37th International Symposium on Computational Geometry, SoCG 2021
EditorsKevin Buchin, Eric Colin de Verdiere
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959771849
DOIs
StatePublished - 1 Jun 2021
Externally publishedYes
Event37th International Symposium on Computational Geometry, SoCG 2021 - Virtual, Buffalo, United States
Duration: 7 Jun 202111 Jun 2021

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume189
ISSN (Print)1868-8969

Conference

Conference37th International Symposium on Computational Geometry, SoCG 2021
Country/TerritoryUnited States
CityVirtual, Buffalo
Period7/06/2111/06/21

Keywords

  • Approximation algorithms
  • Geometric packing
  • Guillotine cuts
  • Multidimensional knapsack
  • Rectangle packing

Fingerprint

Dive into the research topics of 'On guillotine separable packings for the two-dimensional geometric knapsack problem'. Together they form a unique fingerprint.

Cite this