On fast approximate submodular minimization

Stefanie Jegelka, Hui Lin, Jeff Bilmes

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

35 Scopus citations

Abstract

We are motivated by an application to extract a representative subset of machine learning training data and by the poor empirical performance we observe of the popular minimum norm algorithm. In fact, for our application, minimum norm can have a running time of about O(n7) (O(n5) oracle calls). We therefore propose a fast approximate method to minimize arbitrary submodular functions. For a large sub-class of submodular functions, the algorithm is exact. Other submodular functions are iteratively approximated by tight submodular upper bounds, and then repeatedly optimized. We show theoretical properties, and empirical results suggest significant speedups over minimum norm while retaining higher accuracies.

Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 24
Subtitle of host publication25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011
PublisherNeural Information Processing Systems
ISBN (Print)9781618395993
StatePublished - 2011
Externally publishedYes
Event25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011 - Granada, Spain
Duration: 12 Dec 201114 Dec 2011

Publication series

NameAdvances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011

Conference

Conference25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011
Country/TerritorySpain
CityGranada
Period12/12/1114/12/11

Fingerprint

Dive into the research topics of 'On fast approximate submodular minimization'. Together they form a unique fingerprint.

Cite this