Abstract
In the last decade, there has been remarkable progress on the practical integration of on-chip quantum photonic devices, yet quantum-state generators remain an outstanding challenge. Simultaneously, the quantum-dot photonic-crystal-resonator platform has demonstrated a versatility for creating nonclassical light with tunable quantum statistics thanks to a newly discovered self-homodyning interferometric effect that preferentially selects the quantum light over the classical light when using an optimally tuned Fano resonance. In this work, we propose a general structure for the cavity quantum electrodynamical generation of quantum states from a waveguide-integrated version of the quantum-dot photonic-crystal-resonator platform, which is specifically tailored for preferential quantum-state transmission. We support our results with rigorous finite-difference time-domain and quantum-optical simulations and show how our proposed device can serve as a robust generator of highly pure single- and even multiphoton states.
Original language | English |
---|---|
Article number | 044002 |
Journal | Physical Review Applied |
Volume | 7 |
Issue number | 4 |
DOIs | |
State | Published - 3 Apr 2017 |