Offline Reinforcement Learning for Quadrotor Control: Overcoming the Ground Effect

Luca Sacchetto, Mathias Korte, Sven Gronauer, Matthias Kissel, Klaus Diepold

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Applying Reinforcement Learning to solve real-world optimization problems presents significant challenges because of the large amount of data normally required. A popular solution is to train the algorithms in a simulation and transfer the weights to the real system. However, sim-to-real approaches are prone to fail when the Reality Gap is too big, e.g. in robotic systems with complex and non-linear dynamics. In this work, we propose the use of Offline Reinforcement Learning as a viable alternative to sim-to-real policy transfer to address such instances. On the example of a small quadrotor, we show that the ground effect causes problems in an otherwise functioning zero-shot sim-to-real framework. Our sim-to-real experiments show that, even with the explicit modelling of the ground effect and the employing of popular transfer techniques, the trained policies fail to capture the physical nuances necessary to perform a real-world take-off maneuver. Contrariwise, we show that state-of-the-art Offline Reinforcement Learning algorithms represent a feasible, reliable and sample efficient alternative in this use case.

Original languageEnglish
Title of host publication2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages7539-7544
Number of pages6
ISBN (Electronic)9781665491907
DOIs
StatePublished - 2023
Event2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023 - Detroit, United States
Duration: 1 Oct 20235 Oct 2023

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
Country/TerritoryUnited States
CityDetroit
Period1/10/235/10/23

Fingerprint

Dive into the research topics of 'Offline Reinforcement Learning for Quadrotor Control: Overcoming the Ground Effect'. Together they form a unique fingerprint.

Cite this