Oestradiol is a potent mitogen and modulator of GnRH signalling in αT3- 1 cells: Are these effects causally related?

B. Williams, A. N. Brooks, T. C. Aldridge, W. D. Pennie, R. Stephenson, C. A. McArdle

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

GnRH acts via phospholipase C (PLC) activating G-protein coupled receptors to stimulate secretion of gonadotrophins from gonadotrophs. These cells are also regulated by gonadal steroids, which act centrally to influence GnRH secretion, and peripherally to modulate GnRH action. We have shown that oestradiol can stimulate proliferation and modulate GnRH- stimulated [3H]inositol phosphate ([3H]IP(x)) accumulation (used as a measure of PLC activity) in a gonadotroph-derived cell line (αT3-1). Here we show that when αT3-1 cells were incubated in medium with 2% foetal calf serum (FCS), [3H]thymidine incorporation was not stimulated by oestradiol but was reduced to <2% of control by the oestrogen antagonist, raloxifene. The inhibitory effect of 10 or 1000 nM raloxifene was reversed competitively by oestradiol. A similar pattern of effects was seen when effects of oestradiol and raloxifene on the proportion of cells in the S-phase of the cell cycle (as measured by flow cytometry of propidium iodide-labelled cells) and on oestrogen receptor activity (as measured by transactivation of the oestrogen-response elements in the vitellogenin promoter) were quantified. In addition, RT-PCR revealed expression of α and β (but not β2) subtypes of oestrogen receptors. Thus, oestrogen is an essential mitogen for αT3-1 cells, its mitogenic effect is oestrogen receptor mediated and is associated with a marked alteration of cell cycle distribution, and the full extent of these effects are best revealed in the presence of raloxifene. Using this strategy, we found that cells cultured for 4 days with 10 nM raloxifene expressed GnRH receptors (K(d) for 125I-buserelin 4.33 nM) and that their activation by GnRH caused a concentration-dependent increase in [3H]IP(x) (in cells labelled with [3H]inositol) and inositol 1,4,5 trisphophate (in unlabelled cells). Addition of 10 nM oestradiol (to overcome receptor blockade by raloxifene) reduced GnRH receptor number by 31% but increased maximal effects on [3H]IP(x) and Ins(1,4,5)P3 approximately 4-fold. The effects of oestradiol on GnRH receptor number and signalling were not, however, mimicked by culture for 2 days in medium with 10% FCS and the S- phase blocker, thymidine (15 mM). This treatment increased the proportion of cells in the S-phase 2- to 3-fold but did not alter GnRH receptor number or signalling. Other treatments which altered cell cycle transition (hydroxyurea, colcemid, methotrexate) also failed to alter GnRH receptor number or signalling and no correlation was seen between GnRH receptor number or GnRH-stimulated [3H]IP(x) accumulation and the proportion of cells in the S-phase or G2/M-phases of the cell cycle. Thus, oestradiol has pronounced effects on GnRH signalling, proliferation and cell cycle distribution in αT3-1 cells, but these trophic effects do not underlie the modulation of GnRH signalling.

Original languageEnglish
Pages (from-to)31-43
Number of pages13
JournalJournal of Endocrinology
Volume164
Issue number1
DOIs
StatePublished - 2000
Externally publishedYes

Fingerprint

Dive into the research topics of 'Oestradiol is a potent mitogen and modulator of GnRH signalling in αT3- 1 cells: Are these effects causally related?'. Together they form a unique fingerprint.

Cite this