Observation of the Nonreciprocal Magnon Hanle Effect

Janine Gückelhorn, Sebastián De-La-Peña, Monika Scheufele, Matthias Grammer, Matthias Opel, Stephan Geprägs, Juan Carlos Cuevas, Rudolf Gross, Hans Huebl, Akashdeep Kamra, Matthias Althammer

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

The precession of magnon pseudospin about the equilibrium pseudofield, the latter capturing the nature of magnonic eigenexcitations in an antiferromagnet, gives rise to the magnon Hanle effect. Its realization via electrically injected and detected spin transport in an antiferromagnetic insulator demonstrates its high potential for devices and as a convenient probe for magnon eigenmodes and the underlying spin interactions in the antiferromagnet. Here, we observe a nonreciprocity in the Hanle signal measured in hematite using two spatially separated platinum electrodes as spin injector or detector. Interchanging their roles was found to alter the detected magnon spin signal. The recorded difference depends on the applied magnetic field and reverses sign when the signal passes its nominal maximum at the so-called compensation field. We explain these observations in terms of a spin transport direction-dependent pseudofield. The latter leads to a nonreciprocity, which is found to be controllable via the applied magnetic field. The observed nonreciprocal response in the readily available hematite films opens interesting opportunities for realizing exotic physics predicted so far only for antiferromagnets with special crystal structures.

Original languageEnglish
Article number216703
JournalPhysical Review Letters
Volume130
Issue number21
DOIs
StatePublished - 26 May 2023

Fingerprint

Dive into the research topics of 'Observation of the Nonreciprocal Magnon Hanle Effect'. Together they form a unique fingerprint.

Cite this