Object based fusion of polarimetric SAR and hyperspectral imaging for land use classification

Jingliang Hu, Pedram Ghamisi, Andreas Schmitt, Xiao Xiang Zhu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

14 Scopus citations

Abstract

In this paper, we propose an object-based fusion approach for the joint use of polarimetric synthetic aperture radar (PolSAR) and hyperspectral data. The proposed approach extracts information from both datasets based on an object-level, which is used here for land use classification. The achieved classification result infers that the proposed methodology improves the classification performance of both hyperspectral and PolSAR data and can properly gather complementary information of the two kinds of dataset. The fusion approach also considers that only limited training samples are available, which is often the case in remote sensing.

Original languageEnglish
Title of host publication2016 8th Workshop on Hyperspectral Image and Signal Processing
Subtitle of host publicationEvolution in Remote Sensing, WHISPERS 2016
PublisherIEEE Computer Society
ISBN (Electronic)9781509006083
DOIs
StatePublished - 28 Jun 2016
Event8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, WHISPERS 2016 - Los Angeles, United States
Duration: 21 Aug 201624 Aug 2016

Publication series

NameWorkshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing
Volume0
ISSN (Print)2158-6276

Conference

Conference8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, WHISPERS 2016
Country/TerritoryUnited States
CityLos Angeles
Period21/08/1624/08/16

Keywords

  • Classification
  • Fusion
  • Hyperspectral image
  • PolSAR

Fingerprint

Dive into the research topics of 'Object based fusion of polarimetric SAR and hyperspectral imaging for land use classification'. Together they form a unique fingerprint.

Cite this