Abstract
In Multi-Agent systems, agents often need to make decisions about how to interact with each other when negotiating over task allocation. In this paper, we present OAR, a formal framework to address the question of how the agents should interact in an evolving environment in order to achieve their different goals. The traditional categorization of self-interested and cooperative agents is unified by adopting a utility view. We illustrate mathematically that the degree of cooperativeness of an agent and the degree of its self-directness are not directly related. We also show how OAR can be used to evaluate different negotiation strategies and to develop distributed mechanisms that optimize the performance dynamically. This research demonstrates that sophisticated probabilistic modeling can be used to understand the behaviors of a system with complex agent interactions.
Original language | English |
---|---|
Pages | 176-183 |
Number of pages | 8 |
State | Published - 2005 |
Externally published | Yes |
Event | 20th National Conference on Artificial Intelligence and the 17th Innovative Applications of Artificial Intelligence Conference, AAAI-05/IAAI-05 - Pittsburgh, PA, United States Duration: 9 Jul 2005 → 13 Jul 2005 |
Conference
Conference | 20th National Conference on Artificial Intelligence and the 17th Innovative Applications of Artificial Intelligence Conference, AAAI-05/IAAI-05 |
---|---|
Country/Territory | United States |
City | Pittsburgh, PA |
Period | 9/07/05 → 13/07/05 |