TY - GEN
T1 - Numerical study on renewable and sustainable fuels for HPDF engines
AU - Frankl, Stephanie G.
AU - Gelner, Alexander D.
AU - Gleis, Stephan
AU - Härtl, Martin
AU - Wachtmeister, Georg
N1 - Publisher Copyright:
Copyright © 2020 ASME.
PY - 2020
Y1 - 2020
N2 - Renewable and sustainable fuels (based on electricity) will play a key role in future scenarios for power supply. Enabling storage and distribution of local and temporal fluctuations of renewable energies, different e-fuels with varying production processes and characteristics get interesting for different locations. For reconversion of the chemical energy, a fuelflexible internal combustion engine with a High Pressure Dual Fuel (HPDF) combustion process is suitable for different e-fuels. As the combustion process is the main influence on emissions, combustion behavior of the studied fuels hydrogen, methane, methanol and ammonia, ignited by the pilot fuels Fischer- Tropsch diesel and polyoxymethylene dimethyl ethers (OME), is investigated in varying fuel pairings. In addition, a review of production efficiencies and important characteristics like toxicity and storage method is given. Afterwards, the application of the investigated fuels in HPDF-combustion is investigated. The investigations are conducted with a numerical 3D-CFD model of a large bore high speed single cylinder research engine. The differences in ignition and combustion when using diesel or OME as pilot fuel are shown and a comparison of the emissions for the used main fuels is given.
AB - Renewable and sustainable fuels (based on electricity) will play a key role in future scenarios for power supply. Enabling storage and distribution of local and temporal fluctuations of renewable energies, different e-fuels with varying production processes and characteristics get interesting for different locations. For reconversion of the chemical energy, a fuelflexible internal combustion engine with a High Pressure Dual Fuel (HPDF) combustion process is suitable for different e-fuels. As the combustion process is the main influence on emissions, combustion behavior of the studied fuels hydrogen, methane, methanol and ammonia, ignited by the pilot fuels Fischer- Tropsch diesel and polyoxymethylene dimethyl ethers (OME), is investigated in varying fuel pairings. In addition, a review of production efficiencies and important characteristics like toxicity and storage method is given. Afterwards, the application of the investigated fuels in HPDF-combustion is investigated. The investigations are conducted with a numerical 3D-CFD model of a large bore high speed single cylinder research engine. The differences in ignition and combustion when using diesel or OME as pilot fuel are shown and a comparison of the emissions for the used main fuels is given.
KW - Dual fuel combustion
KW - High-pressure dual fuel
KW - Internal combustion engine
KW - Numerical study
KW - Power-Genset
UR - http://www.scopus.com/inward/record.url?scp=85094188325&partnerID=8YFLogxK
U2 - 10.1115/POWER2020-16438
DO - 10.1115/POWER2020-16438
M3 - Conference contribution
AN - SCOPUS:85094188325
T3 - American Society of Mechanical Engineers, Power Division (Publication) POWER
BT - ASME 2020 Power Conference, POWER 2020, collocated with the 2020 International Conference on Nuclear Engineering
PB - American Society of Mechanical Engineers (ASME)
T2 - 2019 Canadian Society for Civil Engineering Annual Conference, CSCE 2019
Y2 - 12 June 2019 through 15 June 2019
ER -