TY - GEN
T1 - Numerical models for the prediction of vibro- Acoustical characteristics of light-weighted ceilings
AU - Kohrmann, Mathias
AU - Buchschmid, Martin
AU - Müller, Gerhard
AU - Völtl, Raphael
AU - Schanda, Ulrich
PY - 2013
Y1 - 2013
N2 - In order to set up guidelines for the design of light-weighted ceilings for timber constructions to be used by engineers in practice, investigations based on both measurements and numerical models have been carried out within the cooperative research project "VibWood". In this contribution the setup and the calibration of the numerical model of the structure as well as the prediction of radiated sound are discussed, where a special focus is set on a dimensionless description in order to deduce information for a wide range of system's specifications. The structure, consisting of a timber slab, a floating floor and a suspended ceiling, is built up in a Finite Element model, where the material properties of wood and the characteristics of the system (e.g. support conditions, contact phenomena dynamic properties of individual parts) are considered. The model is parameterized in order to enable computations with varying geometry and material parameters. After calibrating the FE-model with the help of measurements using model updating techniques dimensionless parameters are defined based on the Buckingham-π- Theorem and computations are carried out in order to specify guidelines for various systems. The radiation of sound is computed in a post processing using Integral Transform Methods. Copyright
AB - In order to set up guidelines for the design of light-weighted ceilings for timber constructions to be used by engineers in practice, investigations based on both measurements and numerical models have been carried out within the cooperative research project "VibWood". In this contribution the setup and the calibration of the numerical model of the structure as well as the prediction of radiated sound are discussed, where a special focus is set on a dimensionless description in order to deduce information for a wide range of system's specifications. The structure, consisting of a timber slab, a floating floor and a suspended ceiling, is built up in a Finite Element model, where the material properties of wood and the characteristics of the system (e.g. support conditions, contact phenomena dynamic properties of individual parts) are considered. The model is parameterized in order to enable computations with varying geometry and material parameters. After calibrating the FE-model with the help of measurements using model updating techniques dimensionless parameters are defined based on the Buckingham-π- Theorem and computations are carried out in order to specify guidelines for various systems. The radiation of sound is computed in a post processing using Integral Transform Methods. Copyright
UR - http://www.scopus.com/inward/record.url?scp=84904502235&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84904502235
SN - 9781632662675
T3 - 42nd International Congress and Exposition on Noise Control Engineering 2013, INTER-NOISE 2013: Noise Control for Quality of Life
SP - 4100
EP - 4110
BT - 42nd International Congress and Exposition on Noise Control Engineering 2013, INTER-NOISE 2013
PB - OAL-Osterreichischer Arbeitsring fur Larmbekampfung
T2 - 42nd International Congress and Exposition on Noise Control Engineering 2013: Noise Control for Quality of Life, INTER-NOISE 2013
Y2 - 15 September 2013 through 18 September 2013
ER -