Nucleotides regulate the mechanical hierarchy between subdomains of the nucleotide binding domain of the Hsp70 chaperone DnaK

Daniela Bauer, Dale R. Merz, Benjamin Pelz, Kelly E. Theisen, Gail Yacyshyn, Dejana Mokranjac, Ruxandra I. Dima, Matthias Rief, Gabriel Žoldák

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

The regulation of protein function through ligand-induced conformational changes is crucial for many signal transduction processes. The binding of a ligand alters the delicate energy balance within the protein structure, eventually leading to such conformational changes. In this study, we elucidate the energetic and mechanical changes within the subdomains of the nucleotide binding domain (NBD) of the heat shock protein of 70 kDa (Hsp70) chaperone DnaK upon nucleotide binding. In an integrated approach using single molecule optical tweezer experiments, loop insertions, and steered coarse-grained molecular simulations, we find that the C-terminal helix of the NBD is the major determinant of mechanical stability, acting as a glue between the two lobes. After helix unraveling, the relative stability of the two separated lobes is regulated by ATP/ADP binding. We find that the nucleotide stays strongly bound to lobe II, thus reversing the mechanical hierarchy between the two lobes. Our results offer general insights into the nucleotide-induced signal transduction within members of the actin/sugar kinase superfamily.

Original languageEnglish
Pages (from-to)10389-10394
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume112
Issue number33
DOIs
StatePublished - 18 Aug 2015

Keywords

  • ATPase
  • Elasticity
  • Force
  • Laser trapping
  • Protein extension

Fingerprint

Dive into the research topics of 'Nucleotides regulate the mechanical hierarchy between subdomains of the nucleotide binding domain of the Hsp70 chaperone DnaK'. Together they form a unique fingerprint.

Cite this