Abstract
The nonexistence of heteroclinic travelling waves in an atomistic model for martensitic phase transitions is the focus of this study. The elastic energy is assumed to be piecewise quadratic, with two wells representing two stable phases. We demonstrate that there is no travelling wave joining bounded strains in the different wells of this potential for a range of wave speeds significantly lower than the speed of sound. We achieve this using a profile-corrector method previously used to show existence of travelling waves for the same model at higher subsonic velocities.
Original language | English |
---|---|
Pages (from-to) | 917-934 |
Number of pages | 18 |
Journal | Journal of Nonlinear Science |
Volume | 22 |
Issue number | 6 |
DOIs | |
State | Published - Dec 2012 |
Externally published | Yes |
Keywords
- Advance-delay differential equation
- Fermi-Pasta-Ulam chain
- Lattice
- Piecewise linear
- Stress-strain relation
- Travelling waves