Non-rigid 3D shape retrieval via large margin nearest neighbor embedding

Ioannis Chiotellis, Rudolph Triebel, Thomas Windheuser, Daniel Cremers

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Scopus citations

Abstract

In this paper, we propose a highly efficient metric learning approach to non-rigid 3D shape analysis. From a training set of 3D shapes from different classes, we learn a transformation of the shapes which optimally enforces a clustering of shapes from the same class. In contrast to existing approaches, we do not perform a transformation of individual local point descriptors, but a linear embedding of the entire distribution of shape descriptors. It turns out that this embedding of the input shapes is sufficiently powerful to enable state of the art retrieval performance using a simple nearest neighbor classifier. We demonstrate experimentally that our approach substantially outperforms the state of the art non-rigid 3D shape retrieval methods on the recent benchmark data set SHREC’14 Non-Rigid 3D Human Models, both in classification accuracy and runtime.

Original languageEnglish
Title of host publicationComputer Vision - 14th European Conference, ECCV 2016, Proceedings
EditorsBastian Leibe, Nicu Sebe, Max Welling, Jiri Matas
PublisherSpringer Verlag
Pages327-342
Number of pages16
ISBN (Print)9783319464749
DOIs
StatePublished - 2016
Event14th European Conference on Computer Vision, ECCV 2016 - Amsterdam, Netherlands
Duration: 8 Oct 201616 Oct 2016

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume9906 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference14th European Conference on Computer Vision, ECCV 2016
Country/TerritoryNetherlands
CityAmsterdam
Period8/10/1616/10/16

Keywords

  • Shape representation
  • Shape retrieval
  • Supervised learning

Fingerprint

Dive into the research topics of 'Non-rigid 3D shape retrieval via large margin nearest neighbor embedding'. Together they form a unique fingerprint.

Cite this