TY - GEN
T1 - Non-parametric Representation Learning with Kernels
AU - Esser, Pascal
AU - Fleissner, Maximilian
AU - Ghoshdastidar, Debarghya
N1 - Publisher Copyright:
Copyright © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2024/3/25
Y1 - 2024/3/25
N2 - Unsupervised and self-supervised representation learning has become popular in recent years for learning useful features from unlabelled data. Representation learning has been mostly developed in the neural network literature, and other models for representation learning are surprisingly unexplored. In this work, we introduce and analyze several kernel-based representation learning approaches: Firstly, we define two kernel Self-Supervised Learning (SSL) models using contrastive loss functions and secondly, a Kernel Autoencoder (AE) model based on the idea of embedding and reconstructing data. We argue that the classical representer theorems for supervised kernel machines are not always applicable for (self-supervised) representation learning, and present new representer theorems, which show that the representations learned by our kernel models can be expressed in terms of kernel matrices. We further derive generalisation error bounds for representation learning with kernel SSL and AE, and empirically evaluate the performance of these methods in both small data regimes as well as in comparison with neural network based models.
AB - Unsupervised and self-supervised representation learning has become popular in recent years for learning useful features from unlabelled data. Representation learning has been mostly developed in the neural network literature, and other models for representation learning are surprisingly unexplored. In this work, we introduce and analyze several kernel-based representation learning approaches: Firstly, we define two kernel Self-Supervised Learning (SSL) models using contrastive loss functions and secondly, a Kernel Autoencoder (AE) model based on the idea of embedding and reconstructing data. We argue that the classical representer theorems for supervised kernel machines are not always applicable for (self-supervised) representation learning, and present new representer theorems, which show that the representations learned by our kernel models can be expressed in terms of kernel matrices. We further derive generalisation error bounds for representation learning with kernel SSL and AE, and empirically evaluate the performance of these methods in both small data regimes as well as in comparison with neural network based models.
UR - http://www.scopus.com/inward/record.url?scp=85189642810&partnerID=8YFLogxK
U2 - 10.1609/aaai.v38i11.29077
DO - 10.1609/aaai.v38i11.29077
M3 - Conference contribution
AN - SCOPUS:85189642810
T3 - Proceedings of the AAAI Conference on Artificial Intelligence
SP - 11910
EP - 11918
BT - Technical Tracks 14
A2 - Wooldridge, Michael
A2 - Dy, Jennifer
A2 - Natarajan, Sriraam
PB - Association for the Advancement of Artificial Intelligence
T2 - 38th AAAI Conference on Artificial Intelligence, AAAI 2024
Y2 - 20 February 2024 through 27 February 2024
ER -