TY - GEN
T1 - Non-linear Temporal Subspace Representations for Activity Recognition
AU - Cherian, Anoop
AU - Sra, Suvrit
AU - Gould, Stephen
AU - Hartley, Richard
N1 - Publisher Copyright:
© 2018 IEEE.
PY - 2018/12/14
Y1 - 2018/12/14
N2 - Representations that can compactly and effectively capture the temporal evolution of semantic content are important to computer vision and machine learning algorithms that operate on multi-variate time-series data. We investigate such representations motivated by the task of human action recognition. Here each data instance is encoded by a multivariate feature (such as via a deep CNN) where action dynamics are characterized by their variations in time. As these features are often non-linear, we propose a novel pooling method, kernelized rank pooling, that represents a given sequence compactly as the pre-image of the parameters of a hyperplane in a reproducing kernel Hilbert space, projections of data onto which captures their temporal order. We develop this idea further and show that such a pooling scheme can be cast as an order-constrained kernelized PCA objective. We then propose to use the parameters of a kernelized low-rank feature subspace as the representation of the sequences. We cast our formulation as an optimization problem on generalized Grassmann manifolds and then solve it efficiently using Riemannian optimization techniques. We present experiments on several action recognition datasets using diverse feature modalities and demonstrate state-of-the-art results.
AB - Representations that can compactly and effectively capture the temporal evolution of semantic content are important to computer vision and machine learning algorithms that operate on multi-variate time-series data. We investigate such representations motivated by the task of human action recognition. Here each data instance is encoded by a multivariate feature (such as via a deep CNN) where action dynamics are characterized by their variations in time. As these features are often non-linear, we propose a novel pooling method, kernelized rank pooling, that represents a given sequence compactly as the pre-image of the parameters of a hyperplane in a reproducing kernel Hilbert space, projections of data onto which captures their temporal order. We develop this idea further and show that such a pooling scheme can be cast as an order-constrained kernelized PCA objective. We then propose to use the parameters of a kernelized low-rank feature subspace as the representation of the sequences. We cast our formulation as an optimization problem on generalized Grassmann manifolds and then solve it efficiently using Riemannian optimization techniques. We present experiments on several action recognition datasets using diverse feature modalities and demonstrate state-of-the-art results.
UR - http://www.scopus.com/inward/record.url?scp=85062304525&partnerID=8YFLogxK
U2 - 10.1109/CVPR.2018.00234
DO - 10.1109/CVPR.2018.00234
M3 - Conference contribution
AN - SCOPUS:85062304525
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 2197
EP - 2206
BT - Proceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
PB - IEEE Computer Society
T2 - 31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
Y2 - 18 June 2018 through 22 June 2018
ER -