TY - GEN
T1 - NMPC-MP
T2 - 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021
AU - Hu, Siqi
AU - Babaians, Edwin
AU - Karimi, Mojtaba
AU - Steinbach, Eckehard
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2021
Y1 - 2021
N2 - Motion control and planning for the manipulator are critical components in manipulator teleoperation. Online (real-time) motion control is challenging for active obstacle avoidance and often results in fluctuating and unsafe motion. Offline motion planning, on the other hand, generates precise and secure trajectories for complex manipulation. In this paper, a real-time nonlinear model predictive control based motion planner (NMPC-MP) is designed for teleoperated manipulation. In contrast to traditional NMPC-based approaches, our model considers a complex environment with dynamic obstacles. Our multi-threaded NMPC-MP allows for real-time planning, including dynamic objects. We evaluate our approach both in a simulated environment and with real-world experiments using the Kinova® Movo platform. The comparison to state-of-the-art approaches (e.g., RRT-Connect, CHOMP, and STOMP) shows a significant improvement in real-time motion planning using NMPC-MP. In real-world tests, the proposed planner was applied on a human-shaped dual manipulator setup. Our results show that the NMPC-MP runs in real-time and generates smooth and reliable trajectories. The experiments validate that the planner is able to precisely track active goals from the teleoperator while avoiding self-collision and obstacles.
AB - Motion control and planning for the manipulator are critical components in manipulator teleoperation. Online (real-time) motion control is challenging for active obstacle avoidance and often results in fluctuating and unsafe motion. Offline motion planning, on the other hand, generates precise and secure trajectories for complex manipulation. In this paper, a real-time nonlinear model predictive control based motion planner (NMPC-MP) is designed for teleoperated manipulation. In contrast to traditional NMPC-based approaches, our model considers a complex environment with dynamic obstacles. Our multi-threaded NMPC-MP allows for real-time planning, including dynamic objects. We evaluate our approach both in a simulated environment and with real-world experiments using the Kinova® Movo platform. The comparison to state-of-the-art approaches (e.g., RRT-Connect, CHOMP, and STOMP) shows a significant improvement in real-time motion planning using NMPC-MP. In real-world tests, the proposed planner was applied on a human-shaped dual manipulator setup. Our results show that the NMPC-MP runs in real-time and generates smooth and reliable trajectories. The experiments validate that the planner is able to precisely track active goals from the teleoperator while avoiding self-collision and obstacles.
UR - http://www.scopus.com/inward/record.url?scp=85124353101&partnerID=8YFLogxK
U2 - 10.1109/IROS51168.2021.9636802
DO - 10.1109/IROS51168.2021.9636802
M3 - Conference contribution
AN - SCOPUS:85124353101
T3 - IEEE International Conference on Intelligent Robots and Systems
SP - 8309
EP - 8316
BT - IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2021
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 27 September 2021 through 1 October 2021
ER -