Abstract
Widespread adoption ofmobile augmented reality (AR) and virtual reality (VR) applications depends on their smoothness and immersiveness. Modern AR applications applying computationally intensive computer vision algorithms can burden today's mobile devices, and cause high energy consumption and/or poor performance. To tackle this challenge, it is possible to offload part of the computation to nearby devices at the edge. However, this calls for smart task placement strategies in order to efficiently use the resources of the edge infrastructure. In this paper, we introduce Nimbus-a task placement and offloading solution for a multi-tier, edge-cloud infrastructure where deep learning tasks are extracted fromthe AR application pipeline and offloaded to nearby GPU-powered edge devices. Our aim is to minimize the latency experienced by end-users and the energy costs on mobile devices. Our multifaceted evaluation, based on benchmarked performance of AR tasks, shows the efficacy of our solution. Overall, Nimbus reduces the task latency by ∼ 4× and the energy consumption by ∼77% for real-time object detection in AR applications. We also benchmark three variants of our offloading algorithm, disclosing the trade-off of centralized versus distributed execution.
Original language | English |
---|---|
Pages (from-to) | 1530-1545 |
Number of pages | 16 |
Journal | IEEE Transactions on Cloud Computing |
Volume | 11 |
Issue number | 2 |
DOIs | |
State | Published - 1 Apr 2023 |
Keywords
- Edge computing
- augmented reality
- cloud computing
- optimization
- resource management